Algorithm Design and Analysis

Vinsong

December 17, 2025

Abstract

The lecture note of 2025 Fall Algorithm Design and Analysis by professor & £ —. #H ¥ KT EE E B
BB~~~

Contents

0 Graph Theory: Path and Shortest Path Problems

0.1 Single-Source Shortest Path Problem
0.2 All-Pairs Shortest Path Problem

1 Graph Theory: Maximum Flow Problem

1.1 Ford-Fulkerson’s Algorithm
1.2 Edmonds-Karp Algorithm L
1.3 Bipartite Matching via Maximum Flow

2 Computational Geometry

2.1 Nearest Point Pair e
22 Convex Hull e

3 B-tree, 23-tree, 234-tree, RB-tree

3.1 RB-tree
3.2 Balance Tree (B-tree)

4 Hashing, Randomized Algorithm & Communication Complexity

4.1 Hashing e e e e e e

4.2 Randomized Algorithm & Communication Complexity
5 P & NP

51 P-class & NP-class e

5.2 NP-Hard and NP-Complete i it i i

5.3 The question of Pvs NP

5.4 Reduction e e e e e e e e e e

6 Approximation

6.1 Approximation Algorithm oL
6.2 No Approximation Possible
6.3 Deterministic Rounding L L e
6.4 Randomized Rounding Lo o Lo
6.5 Derandomizedo e

11
12
17
19

20
20
22

24
24
25

27
27
28

30
30
31
31
32

Chapter 1

Graph Theory: Path and Shortest
Path Problems

Lecture 8

Definition 1.0.1 (path). Let G be an n-vertex m-weighted directed graph with weight w (which can
be positive, negative or zero). The weight of a path P of G is defined as

wP)= Y wlay)

zyeE(P)
For vertices u and v of GG, we call a path of G from u to v a uv-path of G.

Definition 1.0.2 (distance). For vertices v and v of G, the distance from u to v in G, denoted by

de(u,v), is defined as

o0 if there is no uv-path in G
da(u,v) = § w(P) VQ € uv-paths, w(P) < w(Q)

—oo otherwise

Comment (1). 218 P #. ™ # shortest uv-path

Comment (2). A E#) path 2 RAHF THLB I - B4 £ X4 path EF £ A E 4 graph
theory #2 & ™ #& walk - V(P), E(P) #% 2 multiset °

1.1 Single-Source Shortest Path Problem

Problem 1.1.1 (Single-Source Distance Problem). Given
o Input: a directed graph G with edge weights w : E(G) — R and a source vertex r € V(G).

o Output: dg(r,v) for all vertices v € V(G).

30 Oct. 14:20

Lecture 8

Note. &A1 VAR T @ E 18 A T A4 (reduce) 2| b & 69 B

Problem 1.1.2 (Single-Source Shortest Path Problem). Given
o Input: a directed graph G with edge weights w : E(G) — R and a source vertex r € V(G).

o Output: a (shortest-path) tree T of G rooted at r such that if G contains a shortest rv-path
of GG, then rv-path of T is a shortest rv-path of G.

BT VA RAM FE 2% 2 #% 3£ Single-Source Distance Problem » st @B B Z m = Q(n)

Comment (1). A TR DFS LR E r & 532698 > BT MR

dg(r,v) < oo, Yv € V(G)

1.1.1 Bellman-Ford Algorithm
Algorithm. For each vertex v € V(G), we use d[v] to estimate d(v).

o Initialization

0 i=r

dli] =

0o otherwise

o Repeat n — 1 times relaxation step: for each edge uv € E(G), & #7
d[v] = min{d[v], d[u] + w(uv)}
o Relaxation 4 4% > For each edge uv € E(G), if d[v] > d[u] + w(uv), then
d[v] = —oc0

o For each vertex v € V(G), 4» F 4T YA AE AT v which d[u] = —oo reach (DFS O(m +n)) »
A

dv] = —o0

Note. The running time is O(mn).
Proof. MM — L85

Observation (1). £ n — 1 % relaxation # > Vv € V(G), d[v] > d(v) » 7Ki& R & /3 E E 49
d(v).

CHAPTER 1. GRAPH THEORY: PATH AND SHORTEST PATH PROBLEMS 3

Lecture 8

Observation (2). If P is a shortest rs-path of G for some s € V(G),
o ik rs-path E&9#F—18 v of P> ig4% rv-path 4.4 52 shortest rv-path of G.

o HAFH—1 edge uv of P, if f£ 2L AT 49 relaxation step 4 > & F

£ % relaxation step % > €F

IR, 78 F A A %9 Bellman-Ford Algorithm #) EREM o &AM 5 =4 3T > Case 1 & A Z AL
ATV DFS BRI T o

o Case 2: d(v) # —oo. Let P be a shortest rv-path of G. for each vertex w; of P, where
J=0,1,...,[V(P)| =1, up = 7 and ujy(py—1 = v. RFE &AM # Obs.2 > KfkdEF | X
relaxation step 4%

du;] = d(u;) Vi € {0, ,min(i, [V(P)| - 1)}

o Case 3: d(v) = —oo: AAZNERTHEE—CHKRAERT > B ZAHEL ro-path P of G,
which contain a cycle C such that w(C) < 0. Ff A HA T 1A

Claim. At the end of n-th round,
du] = —00 Yu € V(C)
By u € V(P), we have d[v] = —oo at the end.

To prove this claim, we assume for contradiction. The n-th of round 3 % F & o £ # d[u] for
all u € V(C). #HAERX$ 4 —18% 4 relaxation #f & 2% %k 8k > Thus,

d[z] + w(zy) > dly] Vay € E(C)
o C EFrA 148 inequality 23 Aete g » KA 4% 3]

Z w(zy) >0

zy€E(C)

contradiction to w(C) < 0.

Hence, Bellman-Ford Algorithm is correct. |

1.1.2 Lawler’s Algorithm

Remark. 43 Acyclic Graph 4 Algorithm > Since the input graph has no cycle, it has no negative

cycle.

Algorithm. R % 2 One Relaxation Step L7 VA T

o A O(m+n) #—=% Topological Sort on the input directed acyclic graph G to get a topological
order u;, Vi € {1,...,n}

CHAPTER 1. GRAPH THEORY: PATH AND SHORTEST PATH PROBLEMS 4

Lecture 8

o Initialization

0 ;= 0(d[r] =0
sy = [0 1=001=0
oo otherwise

e For ¢ from 1 to n, we do relaxation step for each u;v

d[v] = min{d[v], d[u;] + w(u;v)}

Note. The running time is O(m + n).

Proof. B % 1 2 — {8 DAG > Ff ¥l % — %k Topological Sort 74 » & 4P sk T VA %n iE 418 2 49
outgoing edge JIg /& > 4L 3k & 4 iE 4] £ shortest path 72 @& &9 08 &5 > B sk Bp 48 &AM R 4o i 33 15
u;v-path £9RFE > {2 HATT AR B A RMIR L E] u; W984E > dlu] SEREREN du;) T o BHK
11 R % B —=% relaxation step #TWA T o]

1.1.3 Dijkstra’s algorithm
Remark. X4 % 414 Non-Negative Weighted Graph #) Greedy Algorithm » = WA £ it — ¥ 49
ffi1t > Since the input graph has no negative edge, it has no negative cycle.
Algorithm. One round of estimate improvement suffices, although we cannot rely on topological
sort (since G may contain cycles).
o Initialization
0 v=r

dv] =

oo otherwise
o A n X iteration » £k iteration HE R R E B 9B FEE du] HABE v EH u 95
—1B outgoing edge uv # relaxation
Note. The running time is O(m + nlogn).
Proof. Let’s prove the correctness by contradiction.
1° Let v be the first vertex selected in S with d[v] # d(v). We have
d[v] > d(v)
BTREMEE v AN S 61
2° Let P be the shortest rv-path of G.
3° Let zy be an arbitrary edge of P such that x € Sand y ¢ S. (T HER A reS muv¢s)

4° B ARMEZRIE v BrYl ay is already processed, we have

dlyl =d(y), y #v

CHAPTER 1. GRAPH THEORY: PATH AND SHORTEST PATH PROBLEMS 5

Lecture 9

5° Since G are nonnegative and y precedes v in P, we have
dly] < d(v)
6° By 1°, 5°, and 4° we have
dv] > d(v) = dly] = d(y)

which contradicts the selection of v. &A% FRZE S v B AL RZRNGIE > EFH —1@
y

Hence, Dijkstra’s algorithm is correct.

Figure 1.1: Dijkstra’s Algorithm Correctness

Lecture 9

13 Nov. 14:20

1.2 All-Pairs Shortest Path Problem

Problem 1.2.1 (All-Pairs Distance Problem). Given

o Input: an edge-weighted directed graph G with V(G) = {1,2,--- ,n} edge weights w : E(G) —

R+, without negative cycles.

e Output: dg(i,7) for all 4,5 € V(G).

[Inputs G without negative cycles J [Output: dg(i,7) for all 4,5 € V(QG) J

[af1[2]s[4[5][6]

1 0 3 2 3 0] 2

2|l o0 0O 2 1 1-21]0

— 3 ool 0|1]-2]0

4loo|oo]oo| 0 |-3]|-1

5 |loo oo |oo|oco| 0] 2

6|[co]oco| O |oco|oo]| O

Figure 1.2: All-Pairs Distance Problem Example

CHAPTER 1. GRAPH THEORY: PATH AND SHORTEST PATH PROBLEMS 6

Lecture 9

Algorithm (Naive Solution). Sloving the single-source shortest path problem for each vertex using

Dijkstra, Lawler, or Bellman-Ford algorithm.

1.2.1 A Naive DP Solution

Definition 1.2.1. Let wy (7, j) be the length of the shortest ij-path in G having at most k edges. It

will be oo if no such path exists.
wnfl(i,j) :dG(Zvj)

Algorithm. Use the recurrence relation for w4, j) is

wi(i,j) = w(ij)
wak(h,4) = min (wp(i,0) + wi(t,)
o For each (i, j, k), take O(n) time to compute wo (i, 7) from wy (7, 7).

o For each k, there are n? pairs of (i, j), using O(n?®) time to compute all wsy, from all wy.

o It take O(logn) iterations to compute dg = w,_1 from w;.

Note. The running time is O(n®logn).

1.2.2 Floyd and Warshall’s DP algorithm

Definition 1.2.2. Let d(4, j) be the length of the shortest ij-path in G whose intermediate vertices

are at most k. It will be oo if no such path exists.

do(i,j) = w(ij)

O—O0—0O0—0—0—0—"0

indices at most k—1 indices at most k—1

Algorithm (Floyd and Warshall's DP Algorithm). Using the recurrence relation for dy (i, 7) is
do(i,j) = w(ij)
dr(i,j) =min{dk—1(i,5), dr—1(4,k) + dp—1(k,j)}
e For each (i, 7, k), take O(1) time to compute dg(,7) from di_1(%, 7).
o For each k, there are n? pairs of (i, j), using O(n?) time to compute all dj from all dj,_;.

o It take n iterations to compute dg = d,, from dg.

CHAPTER 1. GRAPH THEORY: PATH AND SHORTEST PATH PROBLEMS 7

Lecture 9

Note. The running time is O(n?).

1.2.3 Johnson’s Reweighting Technique

Algorithm (Naive Solution with Dijkstra). 4w & &AM 7T A £ £] — {8 nonnegative edge-weight #J graph >
&AL T VAR 230 A Dijkstra’s algorithm 2 ## All-Pairs Shortest Path Problem

o For each vertex i of G, run Dijkstra’s algorithm + Quake heap in O(m + nlogn) time to
compute dg(i,7) for all j € V(G).

Note. The running time is O(nm + n?logn).

FrA BA & B —18 7 ke H B #4469 graph # 4 A& nonnegative edge-weight # graph > Reweighting w

into w such that
e W is nonnegative

o If w is the reweighted shortest ij-path, then the original shortest ij-path is w.

Algorithm (Johnson's Reweighting Technique). Following these steps:
o Assign a weight h(i) to each vertex i of G.

o Let
(i) = w(ij) + k(i) — h(j)

e Then for any ij-path P, we have

W(P) = w(P) + h(i) = h(j)

Remark. P is a shortest ¢j-path in G with respect to w if and only if it is a shortest ij-path

in G with respect to w.

(4+5+3—-1)+3-2=8+2+1+1) (T+2+3)+3-2=(0+2+1)

Figure 1.3: Reweighting Example

B2 AR K h(1) 4243 W nonnegative ? ke E2H T > &A% T LA Dijkstra’s algorithm s ## All-Pairs
Shortest Path Problem o

CHAPTER 1. GRAPH THEORY: PATH AND SHORTEST PATH PROBLEMS 8

Lecture 9

Algorithm (Johnson's Technique: Finding h(7)). Following these steps:

o Let graph H be obtained by adding a new vertex s to G and adding an edge s; of weight 0

for each vertex 7 of G.

I Note. H has no negative cycle iff G has no negative cycle.

o Let h(i) be the distance from s to 7 in H, i.e.

o The dp(s,i) can be computed using Bellman-Ford algorithm in O(m + n) time.

Proof. To see that w is nonnegative, observe the Figure 4.4.

~

OO

Figure 1.4: Proof of correctness of Johnson’s Reweighting Technique

By observation, we have

w(if) = w(ig) + h(i) — h(7)
> (w(ig) + dp(s, 7)) — du(s,j) (Triangle Inequality)

shortest sj-path which contain shortest sj-path

=0

Recall. Using Naive Solution with

o General edge weights: Bellman-Ford algorithm in O(mn?) time, which can be ©(n*) when
m = 0(n?).

« Acyclic edge weights: Lawler’s algorithm in O(mn + n?) time.
 Nonnegative edge weights: Dijkstra’s algorithm in O(mn + n?logn) time.

Using Floyd—-Marshall * s DP algorithm in for general edge weights in O(n?) time.

CHAPTER 1. GRAPH THEORY: PATH AND SHORTEST PATH PROBLEMS 9

Lecture 9

Algorithm (Johnson's algorithm). Using Johnson’s Reweighting Technique + Dijkstra’s algorithm

o Obtain h(¢) for all vertex ¢ using Bellman-Ford algorithm in O(mn) time, and get @ from w

in O(m) time.
e For each vertex i of G, run Dijkstra’s algorithm + Quake heap in
O(m + nlogn)

time on G with edge weights w to compute d (7, 7) for all j € V(G). Then obtain a shortest-

paths tree of G(G) rooted at i.

o Compute dg(i,7) for all j € V(G) using
da(i,j) = dg (i, §) + h(5) — h(i)

in O(n?) time.

Note. The running time is O(mn + n?logn).

CHAPTER 1. GRAPH THEORY: PATH AND SHORTEST PATH PROBLEMS 10

Chapter 2

Graph Theory: Maximum Flow
Problem

Problem 2.0.1 (Maximum Flow Problem). Give

e Input: A directed graph G with edge capacities
c: E(G) —» R*
, and two distinct vertices s,t € V(G) called source and sink respectively.

o Output: A “st-flow” with maximum “(flow) value”.

Comment. 733 {8 M # T &AM A2 multiple/parallel edges R & & 44t 5 simple network

Definition. Here are some definitions related to flows:
Definition 2.0.1 (st-flow). A st-flow is a function

f: E(G) — Rt u{0}
that satisfies the following two conditions:

o Capacity constraint:
f(e) <c(e) Vee E(G)

« Conservation law:

Z fluv) = Z flou) Yv e V(G)\ {s,t}

uwweE(G) vu€E(G)

Definition 2.0.2 (Flow value). The flow value of a flow f is defined as

Ifl= > flsv)— > flus)

sveEE(G) us€E(G)

11

Lecture 9

2.1 Ford-Fulkerson’s Algorithm

Intuition. We can reduce the Maximum Flow Problem into reachability problem for a sequence of

residual graphs R.

Definition 2.1.1 (Residual Graph). The residual graph R(f) with respect to a flow f of G with
V(G) = V(R(f)) is defined as follows for each uv € E(G):

o If f(uv) < c(uv), then R(f) contains an edge uv with capacity
cr(p)(uv) = c(uv) — f(uw)
o If f(uv) > 0, then R(f) contains a reverse edge vu with capacity

cr(p) (vu) = f(uv)
Comment (1). R(f) % G —# > FiA c(lw) & RE > REZ 0 RAH -

Comment (2). G & %3& flow ¥4 2 18 > HAHMKE w £ R(f) EaRZ A mEE w
v > AT AR AR AR, o
Lemma 2.1.1. For any st-flow f in G, we have the following properties:

o If dp(y) = oo, then f is a maximum st-flow in G.

o If dr(s) < 00, and g is an st-flow in R(f), then f + g remains an st-flow in G, where

(f +9)(w) = f(w) + g(uv) — g(vu), Vuv € E(G)

Note. Z4#2 69 g(uv), g(vu) ZrZ H R 4569 uv-edge & £ 69 > BRI E EA vu edge 5648 5B
RIE > FAERAEL®E WA XTHET ©

Proof. Let f/ be the maximum st-flow in G, but not f. We defined h as follows:
h(uwv) = f(uv) — f'(w), Yuv € E(G)

Since f and f’ are both st-flows in G, we have conservation law for f and f’, so h satisfies conser-

vation law as well.

Z h(uv) = Z h(vu) Yo e V(G)\ {s,t}

weEE(G) vu€EE(G)
Now consider some vertex z,y,z € V(G) \ {s,t}. If h(zy) > 0, because h satisfies conservation law,

there must exist some h(yz) > 0. Continuing this process, we can find a path P,
P=s—wv -+ — v, —t suchthat h(v;v;p1) >0 Vi=0,1,--- k

If h(uv) > 0, we have
f(uv) > f'(uv) 2 0 (1)

CHAPTER 2. GRAPH THEORY: MAXIMUM FLOW PROBLEM 12

Lecture 9

we know f/(uv) can not exceed c(uv), so
f'(uw) < e(uv) (2)

by (1) and (2), we have
fuv) < e(uv)
which means
cr(p)(uv) = c(uv) — f(uv) >0
Therefore, all edges in R(f) along path P have positive capacities. Which is a st-path in R(f),
contradicting the assumption that dg(y)y = co.

Now we start to prove the second property. We need to show that f + g satisfies capacity constraint

and conservation law.
« Capacity constraint: For any uwv € E(G), we havee some constraint:

— g(w) < ep(py(wv) = c(w) — f(ww) < c(uv)
— g(vu) < cp(py(vu) = f(uv)

to maximize (f + g)(uv), we set g(uv) to its maximum and g(vu) to its minimum, so we have
(f + 9)(wv) = f(w) + g(uv) — g(vu) < f(wv) + (c(w) = f(uv)) = 0= c(uv)
o Conservation law: For any v € V(G) \ {s,t}, we have

Yo ()= Y (f(uw)+g(uw) — g(vu))

weE(G) uvEE(G)
= Z fluw) + Z g(uv) — Z g(vu)
weE(G) weE(G) weE(G)
Z fluv) +0 (by conservation law of g)

uweE(G)

Z flou) (by conservation law of f)
wu€E(G)

= Z (f(vu) + g(vu) — g(uv)) (by conservation law of g)
vu€E(G)

> (f+9)(vu)

vu€E(G)

CHAPTER 2. GRAPH THEORY: MAXIMUM FLOW PROBLEM 13

Lecture 9

Algorithm 2.1: Ford-Fulkerson Algorithm

Input: A flow network G = (V, E) with capacity ¢(u,v); source s; sink ¢.
Output: A maximum flow f.
Initialize f(u,v) < 0 for all (u,v) € E

-

2 Compute residual capacity

cluwv) — fluww) if f(uv) < c(uv)

crnluw) = f(uw) if f(uv) >0

3 while 3 st — augmenting path P in R(f) do
4 Obtain an st-path P of R(f), let ¢ = miny,ep cr(ys)(u,v)
5 Obtain a st-flow g of R(f) by setting

q ifuweP
g(w) =
0 otherwise

6 Update flow f+ f+g
7 end

8 return f

correctness. We separately prove three things:
 Initialization: f is a valid flow in G with value 0.

e According to Lemma 5.1.1 (B42#.2%) : In every round g is a valid flow in R(f), so f + ¢ is

a valid st-flow in G.

o Termination: When the algorithm terminates, dg(s)(s,t) = oo, so by Lemma 5.1.1, f is a

maximum st-flow in G.

Proof complete. |

Definition 2.1.2 (augmenting path). In Ford-Fulkerson algorithm, obtain a st-path P of R(f), let
q= mir}) cr(f)(u,v). The path P is called an augmenting path with respect to flow f.
uve

Definition 2.1.3 (saturating flow). In Ford-Fulkerson algorithm, obtain a st-flow g of R(f) by setting

q ifuveP
g(uv) =
0 otherwise

. The flow g is called a saturating flow with corresponding to P.

CHAPTER 2. GRAPH THEORY: MAXIMUM FLOW PROBLEM 14

Lecture 10

Lecture 10

20 Nov. 14:20

Figure 2.1: Example of Maxflow Problem

& Ford-Fulkerson algorithm #9528 E 247 > ke R A 2242 B > Al FREEE VI 1
RE > om RERGETRALC =) pele) BRESME C % HREMFHAZIEE O(m) #
BER O MR A

T(m,C) =0(C)-0(m) =0(mC)

2> TEER [238 XM (polynomial time) E 575 ? 222 [35# M] (exponential time) &
Bk

Remark. Complexity is according to the input size of an instance.

Example. For an n x n matrix multiplication problem, the input size is N = ©(n?) (set all the

number is of size O(1)).
The complexity is
o Linear-time if T(N) = O(N) = O(n?).
+ Polynomial-time if T(N) = O(N)°®M = O(n)°0),

« Exponential-time if T(N) = O(1)Y = O(1)"" or more.

Definition 2.1.4 (Complexity of Linear/Quadratic/Polynomial-time Algorithms). For any instance I »

define its input size as a non-negative integer function
N = size(I),

EF N AFHREMATHNENEARILACBETOREST X - & T(N) AEEHEERAK
A N B8 FORE RBATH R o KAV MR A 20 T2 48

o Linear-time algorithm : 2% T(N) = O(N) -
¢ Quadratic-time algorithm : % T(N) = O(N?) -
« Polynomial-time algorithm : % # £ % # k 4243 T(N) = O(N)°™ o

o Exponential-time algorithm : % # &% # ¢ > 1 #4% T(N) = O(1)" or more °

CHAPTER 2. GRAPH THEORY: MAXIMUM FLOW PROBLEM 15

Lecture 10

Example. For a prime testing problem, given an integer N as input.
We have to consider the input size.

o If input size is N = O(1), then the method of checking all integers from 2 to v/N is

which is a linear-time algorithm.

o If the size of N is not constrainted, then the input size is ©(log N) (bits to represent N). The time
of checking all integers from 2 to L\/NJ is Q(\/]v)

— According to
(log N)°M) = o(V/N) = o(N*/?)

this algorithm is not polynomial-time.

— According to
O(NI/Q) _ O(l)O(logN)

this algorithm is singly exponential-time.

Note. Ff AR # maximum flow problem #J input size &

o # C=0() input size £ O(m)-O(1) =0(m) » FrEZRGHFHA O(mC)=0(m) > BHE

%2 linear-time o
o & X/PTRA > input size £ O(m) - O(logC) = O(mlogC) » B & B3t 698 M 2

O(mC) # O(mlog C)°M

3bi% B % R & polynomial-time °

Remark. Ford-Fulkerson algorithm i € B3R & REE 4 HE > Hlde TEME > RIF L IEEHKGE
0 AR AEMREE - Ford-Fulkerson #3# St A #2 35 L b R 4] o

Figure 2.2: A graph that may cause infinite loop in Ford-Fulkerson algorithm

CHAPTER 2. GRAPH THEORY: MAXIMUM FLOW PROBLEM 16

Lecture 10

2.2 Edmonds-Karp Algorithm

£ ¥ E % — 1Ak # A2 polynomial-time 4 maximum flow algorithm o

e

Theorem 2.2.1. If one make sure that the augmenting st-path in R(f) is always the shortest path

from s to ¢ (in terms of number of edges), then the Ford-Fulkerson algorithm runs in O(m?n) time.

Comment (1). £+ %% % augmenting path #t-2 shortest path & #7# F > Edmonds-Karp algo-
rithm $ 2/ mn round W45 & o

Comment. & EH% G FTH 23 A2 ¥ o

We need two lemmas to prove the above theorem.

Notation. d}(s,u) is the shortest distance from s to u in unweighted version of R(f).

Lemma 2.2.1 (GR2#.5%). If in R(f + g) exists uv edge which is not in R(f), then

R(f+g)(8:0) = d(p)(s,0) +1

Proof. Let P be the shortest augmenting st-path of R(f). If R(f) don’t have the uv edge, P can’t
go through uwv edge. If it does not go through vu edge, too. Then g(uv) = g(vu) = 0. We get

~
\
=
S
&
I
=
I
S,

(f + 9)(uv) = f(uww) + g(uwv
(f +9)(vu) = f(vu) + g(vu) — g(uwv) = f(vu)

Then we get R(f + ¢g) = R(f) which can not have wv edge, which is contradiction. So P must go
through vu edge. Then we have
djyg(s,u) = dj(s,v) +1

Proof complete. |

Lemma 2.2.2 (i35 #1 %). Let P be the shortest augmenting st-path of R(f). Let g be the saturating
flow for R(f) correspond to P. Then for any v € V(G) we have

dR(y+)(5,0) = dp(p) (s, 0)

Proof. Assume for contradiction that there exists some v € V(&) such that

R(f+9)(8:0) <dRp(s,v) (1)

Thus, d}, ,(s,v) # co. Let v be such vertex with the smallest d}, (s,v). We know v # s since
dj,4(s,8) = dj(s,s) = 0. Let @ be the unweighted shortest sv-path in R(f + g) (u could be s).
Let uv be the last edge of Q. We have

A (s,u) < dppig)(s,u) (2)

If uv C R(f), then equation (2), and imply

dr(p)(8,0) < dppy(s,u) +1 < dipig)(s,u) +1 R(f+g)(8:0)

CHAPTER 2. GRAPH THEORY: MAXIMUM FLOW PROBLEM 17

Lecture 10

which is contradiction to equation (1).
If uv € R(f), by #1545 (wv € R(f) and uv C Q C R(f + g)), then equation (2) and
imply

d}}(f)(s,v) = d}}(f)(s,u) -1< d*R(f+g)(s,u) -1 d}}(f_i_g)(s,v) -2

which is contradiction to equation (1), too. |
Now let compute the time complexity of Edmonds-Karp algorithm.

Time Complexity. Since each augmenting path can be found by BFS in O(m) time, we only need

to proof that algorithm halt in O(mn) rounds.

Claim. Every round “saturates” at least one edge in the shortest st-path P found in that round,
which is O(m) edges in G U G", causing them to be removed from the residual graph of the

next round. Thus, we can just show that each uv C GUG” being removed O(n) times in total.
Suppose that an edge uv of GUG" is not in R(f)

 appears in R(f + g) and

e removed in R(f +g+---+ ¢ + h) for the first time after R(f + g)

where h is the saturating flow of R(f + g+ -+ + ¢’ + h) corresponding to the shortest augmenting
st-path in R(f + g+ -+ + ¢’) saturates uv. Thus, uv € E(P). We have

S d}%(f+g+...+gl)(sa U) - 1 by I@iﬂgéﬁg‘%
= dR(frgt-tg+h) (S 8) —2 uv € E(P)
Since dj; (s,v) € {0,1,--- ,n—1, 00} for any residual graph H, uv can at most appear and disappear

O(n) times in the residual graphs throughout the algorithm. Thus, the algorithm halts in O(mn)

rounds. and thus run in O(m?n) time. |

Edmonds-Karp #5472 Bk A :
o Bffif ww RE THRZIBHK] —K > R dip(s,u) ¥,
o HEEHE u bty dyp(s,u) RAF O(n) 18T HE 6944,

ProdfE B THRIBZH K On) k> HFEEEVH LKL > —3% O(mn) F& o o XAEH T u
Ao RERAEARIR —HRAIRA > T4

o # 25 u #94E — outgoing edge [HMZIAZH K| —% > B di(s,u) #94E G Ao >
o FEEu) dih(s,u) RA O(n) BETREAIE >

B VA u # B A outgoing edges 23 RAE [MM AH %) O(n) k> mAERE VR H % FTLHA
HE A On?) @b ?

s

BFERLEFY
Zy 87 B u #94E — outgoing edge MR ZMZH KL —% > A dpp)(s,u) $EGHEMEDS 2

R > BIK KRR dyp(s,u) R—REH I B ATHREA LHRIELL > R—ZA shortest path

CHAPTER 2. GRAPH THEORY: MAXIMUM FLOW PROBLEM 18

Lecture 10

2.3 Bipartite Matching via Maximum Flow

Problem 2.3.1 (Maximum matching of bipartite graph). Given
e Input: An undirected “bipartite” graph G
o Output: A matching M C E(G) with maximum |M].

Definition 2.3.1 (Bipartite Graph). A graph G is bipartite if there are disjoint vertex subsets U, V
of G with U UV = V(G) such that every edge of G has one endpoint in U and the other in V.

Definition 2.3.2 (matching). A edge subset M C E(G) is a matching of G if M =) or the minimal

subgraph H of G with E(H) = M which has n};%);[) deg(H) = 1.
ec

We can reduce the maximum matching problem of bipartite graph to the maximum flow problem by the
below construction.

Let G(s,t) be the unit-capacity graph obtained from G by adding
e new source vertex s with edges su for all u € U

e new sink vertex t with edges vt for all v € V

Observation. G has a maximum matching with k edges if and only if G(s,t) has a maximum flow

with value k.
We separately prove the two directions.

e (=) Let M be a maximum matching of G we have to make sure it follow capacity constraints and

Conservation law.
— Capacity constraints: [F % & —#F— matching > i A FRB ue U fmv eV & % XA —1% flow
1 6954838 o

— Conservation law: For each vertex u € U, at most one edge su has flow 1, and for each vertex
v € V, at most one edge vt has flow 1, and for each uv € M, at most exists one flow from
U—V.

o («) Define M = {uv € E(GQ) : f(uv) = 1}. We have to make sure M is a matching. And by the
proposition below, |M| = k.

Proposition 2.3.1. If G(s,t) has a maximum flow with value k, then G(s,t) has an “integral” flow
with value k. Given that each edge of G(s,t) has unit capacity, the set of edges in the middle part
of G(s,t) with non-zero flow forms a matching of G with &k edges. Due to f is closed under {+, —}.

CHAPTER 2. GRAPH THEORY: MAXIMUM FLOW PROBLEM 19

Chapter 3

Computational Geometry

3.1 Nearest Point Pair

Problem 3.1.1 (Nearest Point Pair Problem). Given
e Input: A set P of n points in the plane.

o Output: A pair of points p,q € P such that the Euclidean distance d(p, ¢) is minimized.

Comment. Not losing generality, we can assume that

|P|=2% keN

A naive algorithm is to compute the distance of each pair of points, then solve a £ X P #2 > which takes
O(n?) time.

Figure 3.1: Divide-and-Conquer Strategy for Nearest Point Pair Problem

We can use divide-and-conquer strategy to solve this problem follow the above graph.

20

Lecture 10

Algorithm. Pre sort P by y-coordinate as F,, which would take
O(nlogn)
Then, use divide-and-conquer strategy to solve the problem

1° Spend O(n) time to split P into two halves Pj, and Pg,

Po={p|peP:x(p) <mia}, Pr={p|pe€P:z(p)>Tmi}

with z,;q being the median z-coordinate of points in P. We can use the minimum-selection

algorithm to find the median in O(n) time.
2° Qutput a closest pair among the following three pairs:

o The closest pair in Py, (recursively solved).
o The closest pair in Pg (recursively solved).
o The closest pair (p,q) with p € P, and ¢ € Pr, which can be solved in O(n) time as

below.

Note. Follow the graph below, the node will exist in the vertical strip with width 2d
centered at the dividing line. For each point p in the strip, we only need to check at most

8 points in the box. So the complexity is

O(n) x O(1) = O(n)

R
At most 4
points
At most 4
points

d d
Figure 3.2: Finding Closest Pair Across the Dividing Line
TP A SERE 5B AT d A9 BEP R RIRIR A — B 0 AR ENE > RN RZIE O(n) BF ML T A
Jeig BRI E A8 y BARPEAT o HATHEIEME sorted list & M* o
o M*ig@mie L ¥a9Ba ik L*, £ R P& B R
Bt O(n) B ML SR H AR EE pe M* ek O1) M &2

o ALY by BARE p &y BARREN LT (R M* &EF) &—EaE -

CHAPTER 3. COMPUTATIONAL GEOMETRY 21

Lecture 10

o ER* Py EARSL p &y EARRLY LT (B M ¥ER) &—AEH2 -
For each point p in L*,

e check four points of R* above p in M*.

e check four points of R* below p in M*.

REZS M Pl Em TABEMEE > AL M AEF T ETERAMBE— LK £H B —
69 2d x d 97 HNR A TRENE (WwRETNABGE) -

Note. By master theorem, the time complexity of this divide-and-conquer algorithm is

n

T(n) = 2T (2

) +0(n)

which gives
T(n) = O(nlogn)

Therefore, the overall time complexity including the initial sorting step is

O(nlogn) + O(nlogn) = O(nlogn)

3.2 Convex Hull

Problem 3.2.1 (Convex Hull). Given
e Input: A set P of n points in the plane.

e Output: The convex polygon with a minimum perimeter enclosing all points in P.

¢ °
°
° °
°
[J ° d . :>
o« * % o
° o ¢ o

Figure 3.3: Convex Hull Example

A naive algorithm is to check the p € P with minimum z-coordinate, which must be a vertex on the
convex hull. Then, chose the next vertex with maximum slope to the current vertex. Then, rotate the

whole graph until we return to the starting vertex. This algorithm takes O(n?) time.

Algorithm. Now we introduce a new method with O(nlogn) time complexity.
1° Find the point p* with the lowest z-coordinate in O(n) time (% X&)

2° Sort all the points in P by the slope of the line segment p*p for each p € P\ {p*} in O(nlogn)

time.

CHAPTER 3. COMPUTATIONAL GEOMETRY 22

Lecture 10

3° Chose the initial convex hull H to be the triangle formed by p* and the first two points in the

sorted list.
4° For each remaining point p in the sorted list, do:
e Beacuse the one we chose the points based on the slope from p*, the point p must be
outside the current convex hull H.

e Move along the boundary of H in clockwise direction from the initial point, and remove
all vertices ¢ of H such that the line segment gp makes a left turn with respect to the

edge of H incident to q.

e Do this until we reach a vertex r of H such that the line segment rp makes a right turn

with respect to the edge of H incident to 7.

e Add the edge rp* and p*p to H to form the new convex hull.
This step takes O(n) time in total because each point is added and removed at most once.

Therefore, the overall time complexity is

O(n) + O(nlogn) + O(n) = O(nlogn)

3.2.1 Application of Convex Hull: Farthest Point Pair
Problem 3.2.2 (Farthest Point Pair Problem). Given

e Input: A set P of n points in the plane.

o Output: A pair of points p,q € P such that the Euclidean distance d(p, ¢) is maximized.
We can use the convex hull to solve this problem by doing the bitonic boss problem.
Problem 3.2.3 (Bitonic Boss Problem). Given

o Input: A bitonic sequence A[l], A[2], ---, A[n] of distinct positive integers.

e Output: the index 7 with 1 < ¢ < n such that

Ali] = max A[j]

1<j<n

& convex hull k& 2R 845 A BE 514 > FEEE R K49 W18 25— & & bitonic boss problem #j#% o K it >
EAVT A A
O(nlogn)

B K & convex hull > % 74 /& convex hull E 45 25 A bitonic boss problem # i 5 & & X 49 7 18 % »
which takes
O(h)

time, where h is the number of points on the convex hull. Therefore, the overall time complexity is

O(nlogn)+ O(h) = O(nlogn)

CHAPTER 3. COMPUTATIONAL GEOMETRY 23

Chapter 4

B-tree, 23-tree, 234-tree, RB-tree

Lecture 10

28 Nov. 14:20

4.1 RB-tree

Definition 4.1.1 (RB-tree). RB-tree (Red-Black tree) — binary search tree with additional proper-

ties:
e For black node,

(1) Root is black.

(2) All paths from leaf to root contain the same number of black nodes.
e For red node,

(1) No red node has a red child.
e BST property holds.

(1) Every non-leaf node have two children.

(2) The whole tree are increasing in in-order traversal.

e
L AR Mw

Figure 4.1: An example of RB-tree

24

Lecture 10

Note. The height of RB-tree with n nodes is O(logn), which is use to guarantee the time complexity

of search, insert and delete operation is O(logn) with balancing the tree.

4.2 Balance Tree (B-tree)

Definition 4.2.1 (B-tree). B-tree of order t is a tree with the following properties:
e Every node has at most ¢ children.
o Every non-leaf node (except root) has at least [¢/2] children.
e A non-leaf node with & children contains k& — 1 keys.
e All leaves appear on the same level.

o The keys in each node are sorted in increasing order.
Definition 4.2.2 (23-tree). 23-tree is a B-tree of order 3.
Definition 4.2.3 (234-tree). 234-tree is a B-tree of order 4.

Note. The height of B-tree with n nodes is O(logn), which is use to guarantee the time complexity

of search, insert and delete operation is O(logn) with balancing the tree.

Remark. We can convert RB-tree to 234-tree by merging red nodes to their black parent nodes in

O(n), which means they are equivalent in terms of search, insert and delete operations.

o 0 e

Figure 4.2: Convert RB-tree to 234-tree

CHAPTER 4. B-TREE, 23-TREE, 234-TREE, RB-TREE 25

Lecture 10

Note. To convert RB-tree to 23-tree, we can follow the same procedure as converting to 234-tree,

but we need to ensure we always combine the right child red node with its black parent node.

Figure 4.3: Convert RB-tree to 23-tree

CHAPTER 4. B-TREE, 23-TREE, 234-TREE, RB-TREE 26

Chapter 5

Hashing, Randomized Algorithm &

Communication Complexity

5.1 Hashing

Question. Suppose that we want to represent an initially empty set S of at most n numbers such
that each element of S is a positive integer no more than n. We would like to support the following

operations on S for any given integer ¢ with 1 <1i < n:
e membership: determining whether i belongs to S.

e insertion: inserting ¢ into S.

o deletion: deleting ¢ from S.

To implement the above operations alll in O(1) time, we can use an array of size n (let’s call it ‘A’)

initialized to all zeros. Each index of the array corresponds to an integer from 1 to n.

Intuition. We can use a sorted array or a balanced search tree to store the elements of S. However,
both approaches would require O(logn) time for membership, insertion, and deletion operations.

But it may be possible to achieve O(1) time.

Algorithm. Keep all the elements of S in a binary array C[1...,n]. Specifically, foreach j = 1,...,n,

we maintain the condition that C[j] = 1 holds if and only if S contains element j.
o Space: O(n).

e Time:

creation and initialization: O(n).

membership: O(1) (direct look-up).

insertion: O(1).

deletion: O(1).

27

Lecture 10

Remark. This method still requires O(n) for initialization time.

Algorithm. Maintain a dense array D[l...n| storing the elements contiguously, a sparse array
S[1...U], and a size counter k. The condition that x € Set holds if and only if 1 < S[z] < k
and D[S[z]] = =.

o Space: O(n) (requires memory for the universe size).
o Time:

— creation and initialization: O(1) (no need to zero out arrays).

— membership: O(1) (via double-check logic).

insertion: O(1).

deletion: O(1).

If we want to store a set of n numbers are all integers in the range 1 to m where m is much larger than n,
the above methods would be inefficient in terms of space. If we can have a finger printing function that
maps the large universe of size m to a smaller range of size O(n), we can then use the above methods to

store the set efficiently.

Intuition. We want to find a function that maps a large universe of size m to a smaller range of size
O(n) in O(1) time.
H:{1,2,...,m}—{1,2,...,k} where k =0O(n)

where

Vo £y, H(x) # H(y)

5.2 Randomized Algorithm & Communication Complexity

Question. Given
e Input: two n X n matrices A and B.

e Output: determine whether A = B
Comment (1). The time complexity is ©(n?) by checking each entry one by one.

Comment (2). But we are more interested in communication complexity. To minimize the commu-
nication between two parties (Alice and Bob), we can use a randomized algorithm.
Algorithm. We can use the following randomized algorithm:

e Alice and Bob agree on a vector r with n entries where each entry is chosen uniformly at

random from {0, 1}.

e Compare the vectors Ar and Br.

CHAPTER 5. HASHING, RANDOMIZED ALGORITHM & COMMUNICATION COMPLEXITY8

Lecture 10

Comment. The communication complexity of this algorithm is O(n) if we don’t count the initial

agreement on p.
We can do some analysis on the error probability of this algorithm. If A = B, then Ar = Br always
holds. If A # B, we want to bound the probability that Ar = Br.
Proposition 5.2.1.
Pr[Ar=Br| A=B]=1 (1)
Pr[Ar=Br| A# B] <0.5 (2)
Proof. Equation (1) is trivial. For Equation (2), let C = A — B. Since A # B, we can show that
Pr[Cr=0"|C #0™"] <0.5
Assuming C' # 0™*™ there is a row ¢ of C' whose nonzero entries are ¢;1, ¢;o, ..., ¢, for a k > 1.

Thus, it suffices to show that

k
Pr Zcijkrjk = 0|ci; # 0 for some 5| <0.5
j=1
Let 7;, be the last random variable in the summation. When all the other elements of r determined,

at most one choice of r;, can satisfy the equation.

k k—1
Zj:l Cijr T
Zcijkrjk =0=rj =—
j=1 Cijk
Thus, the probability is at most 0.5.]

If we think about the error probability is too high, we have two solutions:

Algorithm. We can repeat the above algorithm ¢ = O(1) to reduce the error probability to 27 but
the communication complexity would increase to O(tn) = O(n).
Algorithm. We can use the following randomized algorithm:

o Alice and Bob agree on a large prime number p (e.g., p > n?).

o Alice randomly selects a vector r € Z;; where each entry is chosen uniformly at random from
{0,1,...,p—1}.

o Alice computes the vector Ar and sends it to Bob.

o Bob computes the vector Br and compares it with the received vector Ar.

e If Ar = Br, Bob concludes that A = B; otherwise, he concludes that A # B.

CHAPTER 5. HASHING, RANDOMIZED ALGORITHM & COMMUNICATION COMPLEXITY29

Chapter 6

P & NP

6.1 P-class & NP-class

Definition 6.1.1 (P-class). P-class is the class of decision problems that can be solved by a deter-

ministic Turing machine in polynomial time.

Definition 6.1.2 (NP-class). NP-class is the class of decision problems for which a given solution can
be verified by a deterministic Turing machine in polynomial time. Or equivalently, NP-class is the
class of decision problems that can be solved by a non-deterministic Turing machine in polynomial

time.

Remark. To see the definition of deterministic and non-deterministic Turing machine, please refer
to the note on Introduction to the Theory of Computation (CSIE 3110) or the note I made.
Question. Given

e Input: a graph G and an integer k.

e Output: determine whether G contains a clique of size k.
Algorithm (Non-deterministic Algorithm for Clique Problem). Let set S be the empty vertex set. For

each vertex z of G, (non-deterministically) either insert « into S or do nothing. If |S| < k and S is

a vertex cover of G, then output yes. Otherwise, output no.

Note (Correctness of Non-deterministic Algorithm). The correctness of the non-deterministic algo-
rithm should be checked by

e If YES, then there is a computation path of the algorithm that leads to yes.

e If NO, then all computation paths of the algorithm lead to no.
Note (Time Complexity of Non-deterministic Algorithm). We say that a nondeterministic algorithm

N runs in polynomial time if for any input x of IV, any computation of NV on x takes time polynomial

in the size of .

30

Lecture 12

We have more type then we can discuss about P-class and NP-class.
¢ P-class C NP-class.
o Each NP problem can be solved by a deterministic Turing machine in exponential time.

e If P = NP, then all NP problems can be solved by a deterministic Turing machine in polynomial

time.
e Whether P = NP or not is still an open problem.

— P = NP: All hardest problems in NP can be solved in polynomial time.

— P = NP: There are some problems in NP that cannot be solved in polynomial time.

Lecture 12
B —AEEARM kit NP 695k bR S (verifier) # 7 ik o

Definition 6.1.3. A decision problem L is in NP if there exists a polynomial-time algorithm V' such

that for every instance z,

zeLl e Iele < |z|°Y such that V(z,c) = YES

Here, c is called a certificate (or witness) for the instance x.

6.2 NP-Hard and NP-Complete

Definition 6.2.1 (NP-Hard). A problem H is NP-Hard if for every problem L in NP, there is a

polynomial-time reduction from L to H.
VLeNP, L <, H

or equivalently, they are at least as hard as the all problems in NP.

Definition 6.2.2 (NP-Complete). A problem C is NP-Complete if

1. C isin NP, and

2. C is NP-Hard.

NP-Complete 32 NP 72 & & # 69 M A8 > 4o R RATAE K 2 —18 % 78 XuF i) 6908 0% & 422 NP-Complete
P28 > AR prA NP 69 M 2848 7T A& polynomial time W&k > 43235 NP =P o

6.3 The question of P vs NP

Question (Satisfiability (SAT) Problem). Given
o Input: A Boolean formula ¢ in CNF (conjunctive normal form).

e Output: Is there a truth assignment to the variables that makes ¢ true?

CHAPTER 6. P & NP 31

5 Dec. 14:20

Lecture 12

Theorem 6.3.1 (Cook-Levin Theorem). The Boolean satisfiability problem (SAT) is NP-Complete.

23 ¥ Richard Karp £ 1972 %32 7 21 /8 NP-Complete P28 > it B 25 0A 3 25 B 24k 2 NP-Complete
&7 > $k A 892 polynomial-time reduction to SAT

/ SATISFIA‘BILIW\

CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT
, \ PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE SET ,
COVER PACKING CHROMATIC NUMBER
FEEDBACK FEEDBACK DIRECTED SET EXACT CLIQUE
NODE SET ARC SET HAMILTON COVERING COVER COVER
CIRCUIT
3-DIMENSIONAL HITTING STEINER
KNAPSACK
UNDIRECTED MATCHING SET TREE
HAMILTON
CIRCUIT

SEQUENCING PARTITION
MAX CUT

Figure 6.1: All NP-Complete Problems in Karp’s 21 NP-Complete Problems

6.4 Reduction

As previously seen. Problem A can be reduced (in polynomial time) to Problem B if the following
condition holds: if problem B has a polynomial-time algorithm, then so does problem A. which is
denoted as

A<, B

p

6.4.1 Hamiltonian Cycle Problem
Question (Hamiltonian Cycle Problem). Given
e Input: An undirected graph G = (V) E).

e Output: Is there a simple cycle in G that visits every vertex exactly once, i.e. contains all

vertices in V.

Note. i it R & Euler’s tour > F % Hamiltonian cycle R & 2424 £E 2 —=% > @ Euler’s tour A
A H BB HMFEE—R
Question (Hamiltonian Path Problem). Given

e Input: An undirected graph G = (V, E) and two vertices s,t € V.

e Output: Whether there is a simple path in G from s to t that visits every vertex exactly

once, i.e. contains all vertices in V.

CHAPTER 6. P & NP 32

Lecture 12

AP 7T ¥4 4% Hamiltonian Cycle Problem reduce %] Hamiltonian Path Problem >

Corollary 6.4.1. Hamiltonian Cycle Problem <, Hamiltonian Path Problem.

Proof. Let G = (V,E) be an instance of Hamiltonian Cycle Problem. Suppose there is an
polynomial-time algorithm B for Hamiltonian Path Problem. We can get an new algorithm A

for Hamiltonian Cycle Problem as follows:

Algorithm A(G):

We run B(G, s,t) for each edge st € E(G). If all iteration return NO instance, then
return NO; otherwise return YES.

Note. &AL /AMR =M F 1
1° G F—18 &4 Fr % 18 8¢9 Hamiltonian cycle A(G) £ % return YES ?
2° G AF &4 A T8 249 Hamiltonian cycle A(G) &% return NO ?

3° Algorithm A £ & /& polynomial time W % 5% ?

1° v 2 G A —18 €4 77 A T8 849 Hamiltonian cycle » B #7# cycle L #94E & — 4% st ¥ st
BrE > B T IEH R —BH s 3] t 49 Hamiltonian path o B st > & &£ #47 B(G, s,t)
B e YES > it mikfF A(G) =11% YES o

2° R G A A @4 P A 18 %49 Hamiltonian cycle » B $F7445 & — 15 st > #F st BihE > #
T RIS R TR A s 2] t 49 Hamiltonian path o Bt > & KMPAT B(G,s,t) B > & =1%
NO > # M543 A(G) =14% NO -

3° Algorithm A & 28 &4 — £ #47—% B(G,s,t) - BEXEE G A m %> mHi*k B &
polynomial time P %A% > Bp A —18 %A XA p(n) HARABTH n MEBHHELT
ik B 09@ 4T M A O(n)°W o Bk > Ak A 695EHM % O(m-poly(n)) o d AL —&
BT > som £ %4 "1 @ L 4iE 478 M 45242 polynomial time o

Proof complete. u

Hamiltonian Cycle Problem £ NP-Complete # (Karp’s 21 NP-Complete Problems Z —) > By
v, Hamiltonian Path Problem 4.2 NP-Complete % (#4142 Hamiltonian Cycle Problem reduce %|
Hamiltonian Path Problem) o

Question (Longest Path Problem). Given
o Input: A graph G and two vertices u,v € V(G).

e Output: a longest simple uv-path in G.

i % —18 NP M# > T4k —18 NP verifier » 2 21518 verifier 5 longest path » &3t T WA £ polynomial
time WEREE A path £ & 2 longest path o

CHAPTER 6. P & NP 33

Lecture 12

Corollary 6.4.2. Hamiltonian Path Problem <, Longest Path Problem.

Proof. Let (G, u,v) be an instance of Hamiltonian Path Problem. Suppose there is a polynomial-
time algorithm B for Longest Path Problem. We can get a new algorithm A for Hamiltonian Path

Problem as follows:

Algorithm A(G, u,v):

We run B(G,u,v) to get a longest simple uv-path P of G. If P passes through all

vertices of G, then return YES; otherwise return NO.

1° 42 % G A —18 &4 F7 A T8 % 69 Hamiltonian path > 8% H A 47 B(G,u,v) ¥ > longest
simple uv-path P % Z &, & P A 1B % » A(G,u,v) @1% YES o

2° Jm® G RA @4 FrA T8 %4 Hamiltonian path > 8% M #A4T B(G, u,v) B > =% 4 longest
simple wv-path P RTRE LA A TEE: > Bk A(G,u,v) B4 NO o

3° Algorithm A R & Z2#47—% B(G,u,v) > B&ZE G A n {ATEZ > @ A% B £ polynomial
time WAk > P AL —E S XRZE p(n) A HABFTAE n BEEGHFALT > &k B &
AT 2 O(n)°M o Bk > Hk A 494538478 M A O(poly(n)) » 45 # £ polynomial time e

Proof complete. u

6.4.2 Vertex Cover Problem

Question (Vertex Cover Problem). Given
o Input: A graph G = (V, E) and an integer k.
e Output: Determine whether G admits a set of at most k vertices that cover all edges in
E(G).
Question (Independent Set Problem). Given
o Input: A graph G = (V, E) and an integer k.

o Output: Determine whether G contains a subset S of V(G) with |S| > k such that two

vertices in S are not adjacent in G.

HAP T vA#% Vertex Cover Problem reduce %] Independent Set Problem > # & T @ #9#15%

CHAPTER 6. P & NP 34

Lecture 12

Corollary 6.4.3. Vertex Cover Problem <, Independent Set Problem and vice versa.

Proof. Fir we claim that

Claim. For each subset S C V(G), S is a vertex cover of G if and only if V(G) \ S is an

independent set of G.

Proof. We proof the claim as follows:

“=7 #H S BB we EG) HREV A —MAHEAL S F o BHK V(G)\ S R~ independent
set > AlALE 2,y e V(G)\S 1R vy € E(G\S) > 12 oy ¥ mABEREEARE S F > 2 S

% vertex cover X Jg o

‘e JAVG)\S PEERMBIES v,y 2y & E(G) ° B3#% S R vertex cover » A A4
w e EB(G\S) #F u,veV(G)\ S £ V(G)\ S & independent set /& o

Let (G, k) be an instance of Independent Set Problem. Suppose there is a polynomial-time algorithm
B for Vertex Cover Problem. We can get a new algorithm A for Independent Set Problem as follows:
Algorithm A(G, k):
We run B(G, |[V(G)| —k). If B returns YES, then return YES; otherwise return NO.
1° By the claim, they are equivalent.

2° Algorithm A only needs to execute once B(G,|V(G)| — k), and since B runs in polynomial

time, so does A.

Proof complete. |

6.4.3 3-SAT Problem

Definition. Here is the definition of some variants of Satisfiability Problem, suppose z is a Boolean
formula in CNF.

Definition 6.4.1 (literal). A literal is either a variable z; or its negation —z; or we denote as

;.

Definition 6.4.2 (clause). If =1, xa, ..., =) are literals, then
1 Vae V- Vg

is a clause.

Definition 6.4.3 (CNF formula). If C4, Cs, ..., Cy, are clauses, then
CiNCyN---NCpy

is a CNF (Conjunctive Normal Form) formula.

Definition 6.4.4 (k-CNF formula). A k-CNF is a CNF each of whose clauses has k literals.

CHAPTER 6. P & NP

35

Lecture

12

Question (3-SAT Problem). Given
e Input: A k-CNF ¢.

e Output: Determine whether ¢ is satisfiable.

Definition 6.4.5. Given a 3-CNF ¢, for each clause
Ci=aVpVy

we construct a triangle with vertices labeled «, 3, and 7. For any two vertices x and T of the same
variable x that are complement to each other, we add an edge T between them. The resulting
graph is denoted as G(¢).

Theorem 6.4.1. The 3-CNF ¢ is satisfiable if and only if the graph G(¢) has an independent set of
size n.

Proof. We proof the theorem as follows:

“=" If a truth assignment T satisfies ¢, then T satisfy at least one literal in each clause. We choose
an arbitrary one statisfied literal from each clause(triangle). Since no two chosen literals are

adjacent in G(¢), the set of chosen literals forms an independent set of size n in G(¢).

“<” Let S be an independent set of size n in G(¢). Each triangle in G(¢) contributes exactly one
vertex to S. For each o € S, we assign T'(a) = true and T'(&) = false. Since no two vertices
in S are adjacent, this assignment is consistent. Moreover, since S contains one vertex from
each triangle, T satisfies at least one literal in each clause of ¢. Therefore, T is a satisfying

assignment for ¢.

Proof complete. |

OSERONENRC
e"‘agg 05,0

Figure 6.2: An example of constructing G(¢) from
p=(@xVyVz)A(@VYVE)A(TVyYV2)

CHAPTER 6. P & NP

36

Lecture 12

Corollary 6.4.4. 3-SAT Problem <,, Independent Set Problem.

Proof. Let ¢ be an instance of 3-SAT Problem. Suppose there is a polynomial-time algorithm B
for Independent Set Problem. We can get a new algorithm A for 3-SAT Problem as follows:

Algorithm A(¢):

Let m be the number of clauses in ¢. Obtain the graph G(¢). We run B(G(¢), m).
If B returns YES, then return YES; otherwise return NO.

1° By the theorem, they are equivalent.

2° Constructing G(¢) from ¢ can be done in polynomial time, as it involves creating a triangle
for each clause and adding edges between complementary literals. Algorithm A only needs to

execute once B(G(¢),m), and since B runs in polynomial time, so does A.

Proof complete. |

CHAPTER 6. P & NP 37

Chapter 7

Approximation

Lecture 13

7.1 Approximation Algorithm

#7> NP-Hard P12 > RAEF8EE S8 XM NES RAEM > BILRMTETOE AR EL > X
RAE A BE XE H % (heuristic algorithm) s 3%, %] ik ## (approximate solution) » #4t4g — b 694 >
FILER P P49 i€ M o 12 approximate algorithm # R 2 heuristic algorithm > # 4t 4 approximate
algorithm » &AM AH —2L &K :

o 4t % AE{L M (optimization problems) : B 422 F # %12 # (optimal solution) > mIE= L [E |
R & # decision problems

o 4448 % polynomial-time algorithm
o LAMEFEMM A (quality of solution) : i & # heuristic algorithm & X #4 R] 2

;% approximate algorithm #9542 # & approximation ratio > & &4 T :

Definition 7.1.1 (Approximation Ratio). For a minimization problem, let C be the cost of the solution
returned by an approximate algorithm, and C* be the cost of an optimal solution. An algorithm is

said to have an approximation ratio of p(n) if for all instances of size n, it holds that

o <eln)

For a maximization problem, the approximation ratio is defined as

*

e < p(n)

an\

Remark. i#% £ 2 p(n) Ak 1 AT > 2 p=1 BIEEARBR L&

Note. 4 747 additive guarantee # & & 7 X

C—C*| <k

12 4R 3 i 3|

38

12 Dec. 14:20

Lecture 13

7.1.1 Vertex Cover Problem

Question (Vertex Cover (Optimization Version)). Given
o Input: A graph G = (V, E).

o Output: A vertex cover S of G with minimum |S].

Algorithm 7.1: Approximation Algorithm for Vertex Cover
Input: A graph G = (V, E)
Output: A vertex cover C of G
1 C<+ 0
E' + E(G)
while £’ # () do
(u,v) < an arbitrary edge from E’
C + CU{u,v}
E’ + E’\ {edges incident to u or v}

[

w

'y

o

=]

7 return C

HAFEE (u,v) > EFIEAF v A2 v Im N vertex cover C' F » {2 #74 optimal cover C* &R » R EZ u
Hov BT o B RA T A SF F)
IC] <2-|C

it A &9 E 4T 2 O(|V] + |E|) » BrkiE 2 —1{8 2-approximation algorithm

Note. w1 LB A A G4 > #3> worst-case A3

Figure 7.1: Worst-case for Approximation Algorithm for Vertex Cover

optimal cover R & 2% 3% {p1,q1,71} > 12 approximation algorithm T & €% % {p1,p2,q1, 92,71, 72}

Remark (Upper Bound and Lower Bound). B #T €42 #9 vertex cover approximation algorithm #% &%
4& approximation ratio % 2 — € for € = 1 ##|4r Karakostas #9

e

A P#£NP #aT# T > &4r69 lower bound % P-time approximation ratio & & 4952

V2~ 1.414

A H4% Greedy Algorithm i R — & % 4749 approximate algorithm > 4o % & AF1#k A Greedy Algorithm 2
f ik vertex cover M RE > €3I I K2 —{B4F 49 approximate algorithm > B % /&£ worst-case T > .49

CHAPTER 7. APPROXIMATION 39

Lecture 13

approximation ratio T4t & 5% O(logn) » # B & tight #9547 > v R KAV A 69 Greedy Kk £
Repeatedly select the vertex v with

d
max eg(v)

The worst-case can be get by an Bipartite Graph (G = (LU R, E)) as follows:
Build a bipartite graph G = (LU R, E) where

L:|Ll=k

and
F k
R:R= i:leRi, where |R;| = LJ
fEiZ 18 case J& T > optimal cover R % 2% L > 12 Greedy Algorithm & %3 Ry » #3% 2 Ry > 1Rt
M AINEN L AW BEZ AL Bt Greedy Algorithm & #&&%4% |R| B1ES

k

k
= —| =k -Hp=0(klogk
R| ;M k= O(klogk)
n=|L|+|R| =0(k+ Hg) = 0(klogk)
HAP T YA 4F 40 Greedy Algorithm #) approximation ratio %

Il
IL| —

2

<Z’C) = Q(log k) = Q(logn)

i-edges

—

i-edges
i-edges

—

| R;

(5 30)

=
Il
—
SES
| I—

(0900 - 0pp00)

=
I
o

Figure 7.2: Worst-case for Greedy Algorithm for Vertex Cover: The R; to L Connections

vk > £ JEPTA 49 Greedy Algorithm g% %549 approximate algorithm > & 2413 R F] 69 B 2% 3 R F)

#) approximate algorithm e

CHAPTER 7. APPROXIMATION 40

Lecture 13

Note. 31,2 H —A#H 69 % > KA C & 454 T vertex cover M #2H —1{8 2-approximation algorithm >
AR 4744 89 complement B # Maximum Independent Set K42 & 7T VA i% i 48 [F] 49 approximate
algorithm » &3 4 4 100 18 vertex > ¥ optimal cover % & 49 18 vertex > #f optimal independent
set & % RAEH 51 18 vertex > & 2-approximation algorithm & % € % 3% 98 {8 vertex > B b

approximation ratio %
98

E =
12 % B #AR3E vertex cover #9 approximate solution # #% independent set #93% » €43 3] 2 {8 vertex

51
— =25.5
2

2

39K = — B 4& £ 49 approximate algorithm

7.1.2 Traveling Salesman Problem (TSP) in Metric Space

Definition 7.1.2 (Metric Space). A metric space is a set M together with a distance function d :
M x M — R such that for all z,y,z € M, the following properties hold:

o Non-negativity: d(z,y) > 0 and d(z,y) = 0 if and only if x = y.
o Symmetry: d(z,y) = d(y, x).

o Triangle Inequality: d(z,z) < d(x,y) + d(y, 2).

Question (Metric TSP). Given

o Input: A complete graph G = (V, E) with non-negative edge weights that satisfy the triangle

inequality for any three vertices u,v,w € V(QG)

w(vw) < w(uww) + wlvw)

e Output: A minimum-weight Hamiltonian cycle in G.

FA T A AT ik A g i Metric TSP A :

Algorithm 7.2: Approximation Algorithm for Metric TSP
Input: A complete graph G = (V, E)) with non-negative edge weights that satisfy the triangle

inequality
Output: A Hamiltonian cycle in G
1 T < Minimum Spanning Tree of G
2 H « Preorder traversal of T
3 (' < Hamiltonian cycle obtained by visiting vertices in the order of H. Skipping repeated
vertices

4 return C

#7# Minimum Spanning Tree T > B % MST Zi& # p7A vertex ¢ & /DM Z 4 > 7 Hamiltonian cycle
REX4p o — a3k 7T A% R —ARA > 3t B2 —18 spanning tree > Ff ¥A KA T LA4F 3|

w(T) <w(C*\ {e}) < w(C7)

CHAPTER 7. APPROXIMATION 41

Lecture 13

7 Preorder Traversal H &9 total weight %
w(H) =2 w(T)

77 Hamiltonian cycle C' £ & # pkih H £ 69 vertex #4249 » K bR triangle inequality > KA 7T LA
175
lw(O)] < [w(H)| =2 |w(T)| <2 |w(C")]

BT kig & —1{8 2-approximation algorithm
#E A —18 £ 4749 approximate algorithm & Christofides Algorithm > ¥ ¥4 %] 1.5-approximation ratio

Algorithm 7.3: Christofides Algorithm for Metric TSP
Input: A complete graph G = (V, E) with non-negative edge weights that satisfy the triangle

inequality
Output: A Hamiltonian cycle in G
1 T < Minimum Spanning Tree of G
2 M < Minimum-weight perfect matching on the odd-degree vertices of T’
3 H < Eulerian tour of T U M
4 C <+ Short cut of H

5 return C

Note (Perfect Matching). Perfect matching £ 45 & — 8B + > 48718 BA AT T ALE) % —ETE %
89k 5 4

o Edmonds # —# O(mn?) # polynomial-time algorithm

o Gabow and Tarjan & —#& O(n®logn) # polynomial-time algorithm
Let C* be the optimal Hamiltonian cycle. We can derive the following inequalities:
w(T) < w(CY) 1)

w(M) < 5 -w(C) (2)
Combining (1) and (2), we get

w(C) <w(H) =w(T)+w(M) <w(C*) + %w(C*) = gw(C*)

Remark (Inequality (2)). Let C'% be a minimum-weight Hamiltonian cycle for the subgraph induced
by the odd-degree vertices X in T, which denote as G[X]. By the triangle inequality, we have
w(Cx) < w(C7) (3)

Observe that C% can be partitioned into two perfect matchings My and My. (45T & > LB £
Bt A R e B4 B Bz) Thus,

w(M) <0.5- (w(Mr) +w(Mz)) =0.5-w(C%) (4)

Combining (3) and (4), we obtain inequality (2).

CHAPTER 7. APPROXIMATION 42

Lecture 13

Figure 7.3: Partitioning C'y; into Two Perfect Matchings M; and M,

Approximation 4 %4k % f& :

o Polynomial-time Approximation Scheme (PTAS) : #A £ &6 ¢ > 0> A2 —18 78 XM E
Hk > T3] —18 (1 + €)-approximation #9## : Euclidean TSP

o Constant Factor Approximation : A& — 8% # c > #4328 £ & T VA& 3] —{A8 c-approximation #9
: Vertex Cover

o Logarithmic Approximation : & 7 — {8 # # % % log(n) > 1438 £ % T ALK 5 — 18 O(logn)-

approximation #J#% : Set Cover

o No Approximation Possible : 3k P = NP » & 8] R & AT % 38 X i i) 69 540 % B % : General
TSP

7.2 No Approximation Possible

7.2.1 General TSP

Question (General TSP). Given

o Input: A graph G = (V, E) (not necessarily complete) with non-negative edge weights. (w

may not satisfy the triangle inequality)

e Output: A minimum-weight Hamiltonian cycle in G.

S8 M A% A NP-Complete B > 3 F &A1 69 002 IEF £ 69200 > Pl 4w
f(n) =n"

12 F 3K, f(n)-approximation algorithm 47 % 2 NP-Complete M A2 > B %4 %A —18 f(n)-approximation
algorithm B for TSP > #HAf#t 7T A £ 4 ## Hamiltonian Cycle on unweighted Graph P72 :

e 4% B(G) A& %18 Hamiltonian cycle C' % 2
w(C) < f(n) - w(C*)
#4ni& G A Hamiltonian cycle

o w#E B(G) &R E4£4T Hamiltonian cycle C % 2

w(C) < f(n) - w(C)

CHAPTER 7. APPROXIMATION 43

Lecture 13

AKX %k G A A Hamiltonian cycle > B % 4o £ A 1247 Hamiltonian cycle C > 3
w(C) =n =w(C")
@ s> kA f(n)-approximation algorithm for General TSP > &I TAA CREELEFA
Hamiltonian cycle &M 2 > B %A Hamiltonian cycle 493 > approximation algorithm — & 7 ¥A & 5] —
A f(n) w(C*) B (BRAA %) > 1240 £ 74 %A Hamiltonian cycle &3 > approximation
algorithm —E &R 2| tL f(n) - w(C*) A GE (BAHARE) ©
7.2.2 Logarithmic Approximation
Question (Set Cover Problem). Given
o Input: k subsets Sy, Ss,...,S; of a Universe set U = {1,2,...,n}.

e Output: A minimum-size index set I such that

Usi={12,...,n}

il
Theorem 7.2.1. Vertex Cover Problem <, Set Cover Problem.
Proof. Given a graph G = (V| E), we can construct an instance of Set Cover Problem as follows:
o Universe: U =F
o Subsets: For each vertex v € V, define a subset S, = {e € E : e is incident to v}
e Index Set: The index set I corresponds to the selected vertices in the vertex cover.

A vertex cover in G corresponds to a set cover in the constructed instance, and vice versa. Therefore,
solving the Set Cover Problem on this instance will yield a solution to the Vertex Cover Problem.
[|

B VA > Set Cover Problem % —1{@ NP-Hard P8 > &4 T A4 A WL T # Greedy Approximation Algo-
rithm sk &% Set Cover Problem :

Algorithm 7.4: Greedy Approximation Algorithm for Set Cover Problem
Input: A universe set U = {1,2,...,n} and k subsets Sy, Sa,...,S; of U
Output: An index set I such that (J;c; S; = U

110

2 C+ 0

3 while C # U do

4 i + argmax; |S; \ C|

5 C++CUS;

6 I+ Tu{i}

7 return [

CHAPTER 7. APPROXIMATION 44

Lecture 13

Theorem 7.2.2. The Greedy Algorithm is an O(logn)-approximation algorithm for the Set Cover
Problem.
Proof. We now denote the i-th set chosen by the greedy algorithm as S;, and let C; be the set
of elements covered before the S; is chosen. Then we can let the price of choose element j in the
i-iteration is
. . 1
price(j) = m
Which will let the cost of choosing all integer be
Z price(j) = |I|

JjeuU

While j is about to put into C, there are at least n—j+1 elements not covered yet. I* is a collection

of sets that cover all elements, so there is at least one set ¢t € I* that S; cover at least

n—j+1
¥

, which is the average number of elements that each set in I* can cover.

Note. /| % Greedy Algorithm X ZEBETUBERSABEAETNESL > KM 8HFH—
FAEAHE— AL L cover W FHAGES S, > Bk

1S \ Ci| > |S¢ \ Ci

Therefore, we have

—j+1
1Si \ Cs| > %
I
, which implies that
o 1 7]
price(j) = <

|Si\Cs| T n—j+1

Since the total cost is

I
Zprlce \I\<Z] = |I*|- H, = O(logn) - |I"|

e —j+1

, we conclude that the Greedy Algorithm is an O(logn)-approximation algorithm for the Set Cover
Problem. |

7.3 Deterministic Rounding

Integer Linear Linear
— Relazation ¥
Program Program
Approzimation / Analysis Solver
Integral Fractional
<4~ Rounding —
Solution Solution

Figure 7.4: The procedure of Approximation by LP Relaxation and Rounding

CHAPTER 7. APPROXIMATION 45

Lecture 13

AT VA i 8 VA T 9 B 4 3% 3t —18 approximate algorithm :
o ¥ FAEAL P #R R Integer Linear Program (ILP)
o #% ILP #X % A& Linear Program (LP)
e {# A polynomial-time LP solver #& K## LP > %3] fractional solution
o #4 fractional solution % # rounding % i3 #% Ak integral solution
e £# integral solution # %% > ##4 H approximation ratio

VA Vertex Cover Problem #4] » 3847 o VA% o d i st VA T 89 ILP :

Question (Vertex Cover ILP). Let

1 mnode 7 is coverd

Ty =

0 otherwise

The ILP formulation is as follows:
x; +x; > 1 for each edge (i,j) € F
miani s.t. ’ ge (i.J)
eV x; € {0,1} for each node i € V

PR 1% FAPT T A% ILP 2058 A — A% 69 LP -
Question (Vertex Cover LP). The LP formulation is as follows:

x;+x; > 1 for each edge (i,j) € E

ming x; s.t.

iev 0<z;<1 foreachnodeiecV

#FE > AT MEA polynomial-time LP solver s K LP » 4% 3| fractional solution z* = {z}}

Note. Linear Programming * VA /£ % 38 X BF Ml W4k K > % B 49 % £ % A Simplex Method -
Ellipsoid Method #= Interior Point Method iZ 2& LP solver » 12 £ KRB L XA N4 > B LB R K
A —BEEFTUALESBAXFMARE LP -

T > BT XA VLT 49 rounding # A7 & 4% fractional solution #3% 5% integral solution :
Let
C={ieV |z >05}
Remark. #7418 approximation algorithm &AM 48K E =4 F
o Feasibility: C £ & % —18 4 %49 solution
o Tractability: E/70 M 25 4 %78 XA H

« Approximation Ratio: |C| 2 |C*| M # 14

CHAPTER 7. APPROXIMATION 46

Lecture 13

Theorem 7.3.1. The above rounding algorithm is a 2-approximation algorithm for the Vertex Cover
Problem.
Proof. &MI&MNT=M4F

« Feasibility: #4418 edge (i,7) € E > R4 LP $9R&G6H > A
T; +x; >1

F 2T A —E 2 Ry KiAFA0S IR C P2V 046 —MEm > Hib C 2 @4k
vertex cover e

« Tractability: K## LP #9852 % 78 X5 M > @ rounding #9882 R & LB EHTH GTEL
B b EREE TR L 5 8 XBFH] o

e Approximation Ratio: & # rouding solution &; & A T RE

1 ifx; >05
T; =
0 otherwise

7 b &A1 13 5]

Zi'i <2. sz

eV iev
it B & FoiE

in <|C*| = fo < Zi‘z < 22@
W2
|CLp| < |CiLp| < |CRounding] < 2 - |CLp|

P oA AP 17 5]

|CR0unding| S 2. |C*|

AV E =95 > AT VAIF 4013 % —18 2-approximation algorithm for Vertex Cover Problem - M

7.4 Randomized Rounding

Notation. Suppose there are n variables 1,2, ..., n. For each clause C}, we denote the set as ordered
pairs (C’;‘ ,C;) of disjoint subsets of variables, where

C’;r = {i | variable ¢ appears as a positive literal in clause C;}
and

C; = {i| variable i appears as a negative literal in clause Cj}

and
ICil =IC | +IC5 |

BAP B R 69 M 8 2 Max SAT Problem » B % & % 9 K-SAT Problem % decision problem > F st 34
A ¥ 3 %, optimization problem :

CHAPTER 7. APPROXIMATION 47

Lecture 13

Question (Max SAT Problem). Given
o Input: m clauses Cq,Cy,...,Cy, with |C;| < k over n variables 1,2,...,n.
e Output: A truth assignment that maximizes the number of satisfied clauses.
Note. 2-SAT, MAX 1-SAT #r% P M# > # 3-SAT, MAX 2-SAT, MAX 3-SAT #g-% NP-Hard M
A
A EM A > A —FE 0.75-approximation algorithm > # & — 2 8.3 » KA H4

1° Expected ratio > 0.5
2° Expected ratio > 1 —1/e ~ 0.63

3° Expected ratio > 0.75

7.4.1 Expected Ratio > 0.5

FAVBE S —AE T R B

Algorithm 7.5: Random assign

Input: m clauses Cq,Cy,...,Cy, with |C;| < k over n variables 1,2,...,n
Output: A truth assignment that maximizes the number of satisfied clauses
1 for ¢ from 1 ton do
2 Set

True with Pr[True] = 0.5
T; =
False with Pr[False] = 0.5

3 return Assignment X

BAP R 5 HTiE4AE B k49 approximation ratio :

Lemma 7.4.1. Since all variables are assigned independently, the probability of clause C; being
IC5
-(3)
2

B vA the expected number of satisfied clauses is at least

S(-()7) 5%

B 3t > 12 & —18 expected ratio > 0.5 49 approximate algorithm for Max SAT Problem -

satisfies is

which is at least %

CHAPTER 7. APPROXIMATION 48

Lecture 13

7.4.2 Expected Ratio >1—1/e

iE18 kL F R /£ Rouning #3854 7 Randomized Rounding :

Integer Linear Linear
Relazation ——
Program Program
Approzimation / Analysis Solver
Integral Fractional
<— Randomized Rounding
Solution Solution

Figure 7.5: The procedure of Approximation by LP Relaxation and Rounding

We first let
1 wvariable 7 is True
T; =
0 wvariable ¢ is False
and
1 clause C}; is satisfied
Y; =

0 otherwise

Question (Max SAT ILP). The ILP formulation is as follows:
manyj s.t. Z 9 IF Z (1—mz) >y,
g=i ieCt ieCy

with
x; € {O7 1}

Y; € {0, 1}

Then do the relaxation:

Question (Max SAT LP). The LP formulation is as follows:

maXZyj s.t. Z i + Z (1—mz) >y,
j=1

. + . —
zECj zeC].

with

clauses (actual maximum) is at most Y7, y.

of the ILP.

CHAPTER 7. APPROXIMATION

Lemma 7.4.2. Let (z*,y*) be the optimal solution to the LP. The maximum number of satisfied

Proof. Since the LP is a relaxation of the ILP, any feasible solution to the ILP is also a feasible

solution to the LP. Therefore, the optimal value of the LP is at least as large as the optimal value

49

Lecture 13

Algorithm 7.6: Randomized Rounding

1 for i from 1 to n do
2 L Set x; to be TRUE with probability z}

3 return Assignment X

Lemma 7.4.3. We have the inequality:

IC;l
1 J
Pr[C; is satisfied] > [1 — (1 — > Y5
G5

, which is at least (1 —1/e) yj.

Proof. We start from the inequality:

IC5

1 J

Pr[C; is satisfied] > [1 — (1 =) Y5
Gl

ieCcl ieCy

(by AM-GM Inequality)

* x\ |Cj
- (Ziecr (1 =D + Fiegy a1\
- |C5]

v |Gl
< (1 - J) (by LP constraint)
le

(Yiect (@) + Tico- (1 - a7) 1G4
B |C51

Claim. Let f(r) =1— (1 —r/k)*. Then, for any k € Z*, f(r) is concave in r € [0, 1], we have

fr)= (1= -1/k)")r

Proof. One can verify that the claim holds at the endpoints £ = 1,2. Now, assume that k > 2.
We have

f(0)=0

fO)=1-(1-1/k)*

and

d -
ZFE) = (= /R

d? k-1 o

= fr)=——(1— -2 <

Sty = —E 10—t <o

which is concave in r € [0, 1].
By the claim, we have
1G5
LHSZI—(l—) > RHS
Gl
]

CHAPTER 7. APPROXIMATION

50

Lecture 13

7.4.3 Expected Ratio > 0.75

FAT T VU AT AR 7 ik 4k AA A 0 13 3] £ 4F 49 approximation ratio :

Algorithm 7.7: Combined Algorithm

1 Let a boolean variable b be TRUE with probability 0.5
2 if b= TRUE then
3 ‘ run the Random Assign Algorithm

4 else

5 L run the Randomized Rounding Algorithm

6 return Assignment X

Theorem 7.4.1. The above combined algorithm is a %-approximation algorithm for the Max SAT
Problem.
Proof. By lemma 10.4.1, 10.4.3, we have

>1—|(= +(1—-)y; (since lemma 10.4.3)
- 2 e) !
3 . . B
> iyj (since lemma 10.4.1 and 1 — 1/e > 1/2)
. . 3 .
= Pr[C] is satisfied] > 1Y

CHAPTER 7. APPROXIMATION 51

Lecture 13

7.5 Derandomized

APV A% D A% Ak A 2 48 R i 47 derandomization :

7.5.1 Derandomized for Random Assign Algorithm

Figure 7.6: Truth Assignment Tree for SAT

yg b & #9 Truth Assignment Tree > AP 7T VA4 %) B T A& 89 truth assignment &9 decision path > @
AT VUL A A A AR IR A Bl

virx; =1,z =0,23=0
HHME v L AT ILEE —18 partial truth assignment f(v)

Definition 7.5.1 (Expected Satisfied Clauses). For each boolean variable z;, there are 0.5 probability
to be TRUE or FALSE.

Example. For

e (1 = —xy: satisfied T with probability 1/2

o (5 = x5 V as: satisfied T with probability 3/4

e (5= V oV s satisfied T with probability 7/8
because Expected number of satisfied clauses is a linear function, so we have
3 7 _ 13

1
+S+ <

E[number of satisfied clauses] = ST

Expected Satisfied Clauses is the expected number of satisfied clauses.

Corollary 7.5.1. Since Expected Satisfied Clauses is a linear function, we have

E[number of SC] = Pr[z; = F| - E[number of SC | z1 = F]
+ Pr[zy = T - E[number of SC | z; = T

So the conditional expectation is set to

CHAPTER 7. APPROXIMATION 52

Lecture 13

Example. If z; is set to FALSE
o (4 = —xy: satisfied T with probability 1
o Cy = x5V xg: satisfied T with probability 3/4
o O3 =11V oV —x3: satisfied T with probability 3/4

Under this condition, we have

3 3
E[numberofSC\xle]:1+1+Z:5/2

Corollary 7.5.2. If v and w are the children of u, where
e uw corresponds to setting z; = 0
e uw corresponds to setting x; = 1

then
E[u] < max{E[v], E[w]}

Proof. Follow the definition of conditional expectation.
E[u] = Pr[z; = 0] - E[v] + Pr[a; = 1] - E[w)]

-(E[v] + E[w])

N |

< max(E[v], E[w])

Proof complete. |

#£ 18 node #)43 F A4 T YL A polynomial time 3t th > AR KA R KM EZMEGHLLT AL

polynomial time P 7% o

Algorithm 7.8: Derandomized for Random Assign Algorithm

1 Build the Truth Assignment Tree
2 u < root of the tree

3 while u is not a leaf do

4 v, w < children of u
5 if E[v] > E[w] then
6 ‘ U< v

7 else

8 t U 4— W

9 return Assignment f(u)

7.5.2 Derandomized for Randomized Rounding Algorithm

i M % —18 derandomization #M > KA 4L 2 2 5 Truth Assignment Tree > 2 14 1% F A 4 A8 & 8 A 8
A A -

CHAPTER 7. APPROXIMATION 53

Lecture 13

P A RA & 48 % JE 69 PR > do T3 48 node #9244 -
Pr[C; is satisfied] =1 — H (I—2z7) H x}
iect ieCy
Fir VA48 25 89 £ & probability 45 &
o left child: z; = 0 with probability 1 — 7
o right child: z; = 1 with probability =

T YL #% linear programming & & i s > #f4& polynomial time K o

Algorithm 7.9: Derandomized for Randomized Rounding Algorithm

1 Build the Truth Assignment Tree
2 u < root of the tree

3 while u is not a leaf do

4 v, w 4 children of u
5 if E[v] > E[w] then
6 ‘ U<—v

7 else

8 L U 4— W

9 return Assignment f(u)

TURBRAZLE—MOERLE > AR EHE node WIZMAGFT AR WL ©

J

.5.3 Derandomized for Combined Algorithm

(&
H

PR — B4 6% > B 1F 30 —1B derandomized algorithm > 3XAF —4& T VA A 28 £ 1 &

s
o

E[number of SC] = Pr[b = F] - E[number of SC | b = F]
+ Pr[b = T] - E[number of SC | b = T]

A st & AP T A% #2 E[number of SC | b = F] 2 E[number of SC | b = T] & K #) —18 & #47 > B % root
node # expected ratio & 0.75 > Bl 49 &8 child node £ & —18 &) expected ratio &€ 2% > 0.75 -

Algorithm 7.10: Derandomized for Combined Algorithm

1 my < E[number of SC | b = F]
2 mgy < E[number of SC | b =T

3 if m; > my then

4 ‘ run Derandomized for Random Assign Algorithm
5 else

6 L run Derandomized for Randomized Rounding Algorithm

7 return Assignment X

CHAPTER 7. APPROXIMATION 54

	Graph Theory: Path and Shortest Path Problems
	Single-Source Shortest Path Problem
	All-Pairs Shortest Path Problem

	Graph Theory: Maximum Flow Problem
	Ford–Fulkerson's Algorithm
	Edmonds-Karp Algorithm
	Bipartite Matching via Maximum Flow

	Computational Geometry
	Nearest Point Pair
	Convex Hull

	B-tree, 23-tree, 234-tree, RB-tree
	RB-tree
	Balance Tree (B-tree)

	Hashing, Randomized Algorithm & Communication Complexity
	Hashing
	Randomized Algorithm & Communication Complexity

	P & NP
	P-class & NP-class
	NP-Hard and NP-Complete
	The question of P vs NP
	Reduction

	Approximation
	Approximation Algorithm
	No Approximation Possible
	Deterministic Rounding
	Randomized Rounding
	Derandomized

