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Chapter 0

Basic Knowledge

Lecture 1

0.1 Mathematical Notions 2025-09-01

0.1.1 Set & its operation

Definition 0.1.1 (Set). Omitted

Definition (Sequence & Tuple). Here are some definitions of basic containers

Definition 0.1.2 (Sequence). Sequence is the objects in order, which have two properties:

e Order:
(1,2,3) # (2,1,3)

o Repetition:
Sequence : (1,2,3) # (1,1,2,3)

Set: {1,2,3} = {1,1,2,3}

Definition 0.1.3 (Tuple). Finite sequence, (1,2,3) is a 3-tuple

Definition 0.1.4 (Cartesian Product). Here is the Cartesian Product between two sets. We define
A = {1’2}’ B = {x’y}

then,
AxB= {(1,3?), (17y)7 (27‘7:)7 (Q,y)}




Lecture 1

0.1.2 Function & Relation

Definition 0.1.5 (Function). Function is a machine with single output.

Definition (Equivalence Relations). Here are the properties of Equivalence Relations.

Definition 0.1.6 (reflexive).
Vx, xRx

Definition 0.1.7 (symmetric).
Vz,y, tRy <= yRx

Definition 0.1.8 (transitive).

rRy, yRz — xRz

Example.

i=7j4, if 0=i—j5 mod?7
¢ Reflexive
i—1=0 mod?7
e Symmetric
i—j="Ta, j—i=—"Ta
e Transitive

i—j=Ta, j—k=Tb = i—k="1(a+b)
0.1.3 String & Languages
Definition (String & Languages). Here is the definition of Language.

Example (Alphabet).
{0,1}

Example (String).
01000

Definition 0.1.9 (Language). Set of Strings

L(A)

is the language of A

CHAPTER 0. BASIC KNOWLEDGE 3
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0.2 Definitions, Theorems, and Proofs

e Definition: Introduce new concept.
« Statement: A sentence that is either true or flase.
e Theorem: A statement that is true.

— Lemma: A “helping” theorem.

— Corllary: A theorem that follows easily from another theorem.

0.2.1 Proof by Construction

Proposition 0.2.1. Sum of degrees of every graph is even

Proof. Each edge contributes 2 nodes, so

Z deg(v) =2 x |E|

veV

Hence, the sum of degrees of every graph is even.

Note. The implication is the definition of graphs.

0.2.2 Proof by Contradiction

Assume the statement is false, then deduce a contradiction.

0.2.3 Proof by Induction

¢ Basis: Prove for n = 0 or n = 1 or some trivial case.

o Inductive Step: Assume true for n = k (Induction Hypothesis), prove for n = k + 1.

CHAPTER 0. BASIC KNOWLEDGE



Chapter 1

Regular Languages

1.1 Deterministic Finite Automata (DFA)

o Automaton: single

e Automata: plural

Definition 1.1.1 (Deterministic Finite Automata (DFA)). We define a DFA as a 5-tuple
(@ X, 96, q0, F)
where
o Q: Set of states (Finite)
o Y. Alphabet (i.e. set of input characters) (Finite)
e 0: @ XX — @: Transition Function

e o € Q: Start state

e F C @Q: Set of accept states

0 1
1
start q1 @ @
0,1

Figure 1.1: A state diagram

If we call this machine M, then we have.

M = (szv(quDvF)



Lecture 1

For the example given above,

Q={q1,9.43}
¥ ={0,1}
do = Q1
F={g}

The § function:

Definition 1.1.2. The language that recognize by a Machine M is denoted as
L(M)=A

We say A is recognizeed (accepted) by M.

1.1.1 Definition of Computation
Let,

e M=(Q, X, 4, qo, F) be a finite automaton.

e w=wi, - ,w, be a string over 3.

Theorem 1.1.1. M accepts w if 3 states rq - - - 7, such that
(1) 70 =qo
(2) rigy1 =0(rs,wiv1), i=[0,n—1]

3) rp,eF

Definition 1.1.3 (Regular Language). A language is regular if recognized by some automata.

1.1.2 Regular Operations

Definition. Assume A, B are given languages,

Definition 1.1.4 (Union).
AUB={w|we AVwe B}

Definition 1.1.5 (Concatenation).

AoB:{w1w2|w1 EA,’UJQ GB}

CHAPTER 1. REGULAR LANGUAGES 6



Lecture 2

Definition 1.1.6 (Kleene Star).
A ={wy--wg | k> 0,w; € A}
which can also be defined as

14i:{Z'T}UAAUI42U143U"~7 AO:{({}, An:{wv|w€A"*1,fU€A}

(@

i=1

Definition 1.1.7 (closed). We say an operation R is closed if the following property holds if

r e Ay€ A, then zRy € A

Theorem 1.1.2. Regular languages are closed under the union, concatenation, and Kleene star.

Proof. We define two machines as follows

My = (Q1,%,01,q1, F1)
M2 = (Q27Z762aq23F2)

if we union them, we can define a new machine

M =(Q,%,4,q, F)

Q={(r1,r2) | r1 € Q1,72 € Q2}
My UMy =4 6((r1,m2),a) = (61(r1,a), 62(ra, a))
9 = (q1,92)

F={(r1,r2) |m1 € Fy or ry € F5}

Hence, regular languages are closed under union. |

Lecture 2

1.2 Nondeterministic Finite Automata (NFA) 2025-09:08

First, we see a NFA that accept strings with 1 in 3rd position from the end,

0,1

0,
start q1 1 /—\ c m 1 @

Figure 1.2: NFA machine

e J is not a function, i.e. d(q1,1) = g1 or go

e ¢ between ¢, g3 means gz can move to gs without any input

CHAPTER 1. REGULAR LANGUAGES 7
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We can transport NFA to DFA by some method, for example, for the above NFA we can have:

0 0

start 4000

Figure 1.3: NFA machine transport to DFA

We can record it in three bits, it will be complicated.

Definition 1.2.1 (power set).
PQ)={X[X e}

which contain all the 2/9! combinations.

Definition 1.2.2 (Nondeterministic Finite Automata (NFA)). We define a NFA as a 5-tuple
M =(Q,%,8,q, F)
where
o Q: Set of states (Finite)
e Y. =X U{e}
e 5: QxX.— PQ)
* ¢ EQ
e FCQ
Theorem 1.2.1. We have w
W=7y Yn wherey; €,
A sequence ¢ -+ - Ty, such that
(1) 70 =qo
(2) riz1 =0(r45,¥it1), 1=[0,n—1]

3) r,eF

Note. So m may not be the original length (as y; may be ¢)

CHAPTER 1. REGULAR LANGUAGES 8



Lecture 2

1.2.1 Equivalence of DFA and NFA

From DFA = NFA. Formally DFA is not an NFA due to ¥ and ¥.. but we can easily handle this by

adding
gi, e — 0

For NFA = DFA, we have the example on the slides on a graph.

Figure 1.4: NFA example

Figure 1.5: DFA convertion example

« Remove the states that are not reachable.

e Remove the states that not handle the ¢ transition. For example, the start state

{q1} wrong — {q1,¢3} correct

Definition 1.2.3.
E({q0}) = {q0} U {states reached by e from ¢o}

Then we can redefine the procedure formally.

CHAPTER 1. REGULAR LANGUAGES
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Theorem 1.2.2. Given a NFA
M = (Q,E,(S,QO,F)

We can convert it to a DFA
MI = (QI, Za 617 (Z67F/)

where

9 € P(Q) = E({q0})
« FF={R|RcQ ,RNF #(}

o« 0

reER

1.2.2 Closure under reqular operations

We give two NFAs Ny, No,

Nl = (Q1a27617q17F1>
No = (Q2,%, 02, g2, F2)

note that € ¢ ¥, and the graph of them are:

N1 N2

O O
start @ Q start @
O O

Figure 1.6: Ny, Ny

¢ Union: We can contrruct the N7 U N5 in

Figure 1.7: N1 U No

Proposition 1.2.1 (Construction of Union). New NFA is

5/(Ra a) - U E(é(ra CL))

O
O

NIUNQZ(Qa Ea 57 q0, F)

where

CHAPTER 1. REGULAR LANGUAGES
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Lecture 2

0 Q=0Q1UQ2U{q}
o d:
01(q,a) qe€ @
02(q, €
5(q.0) = 2(q,a) g€ Q2
{o, 02} ¢=q,a=¢
(Z) q:q07a'7é€
o FF=F|UF,

¢ Concatenation: We can construct the N7 o Ny in

O
-0 5 O

Figure 1.8: Ny o No

Proposition 1.2.2 (Construction of Concatenation). New NFA is
N10N2 = (Q, Z, 5; q0, F)
where
o Q=Q1UQ2
o d:
51((]767/) QEQl Fi
52((17 a) qc Q2
6(q,a) =
d1(g,e)U{qe} g€ Fra=e¢
61(q35) qEFl,a;éé‘
© 4o =4q1
[©] F:F2

o Kleene star: N; can also accept {(}, then we can construct the Ny in

05 O _

€

Figure 1.9: Ny

Proposition 1.2.3 (Construction of Kleene Star). New NFA is
Nik = (le Ev 517 q0, Fl)

where

o Q=0Q1U{q}

CHAPTER 1. REGULAR LANGUAGES 11
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0 d:
61(g,a) g€
01(q,a) U{q1} qe€ Fr,a=¢
d(q,a) = { 61(g,¢) ge Fi,a#e
{a} g=qgo,a=c¢
0 q=qo,a#e¢
o F'=F U{q}

Note. Some operations are also closed under regular languages,

o Intersection:

A1 N Ay

Use the product automaton (the same construction as for Union). A string is accepted if and

only if the state is in the accept states of both N7 and N» at the same time.

o Set Difference:
Ay — Ay

Use the product automaton as well. A string is accepted if the state is in the accept states of
N7 but not in the accept states of Ns.

o Complement:

A =% — Ay
Since ¥* is regular and the class of regular languages is closed under set difference, Af is also
regular.
Lecture 3

1.3 Regular expressions

A regualar expression is a tool to describe a language.

Definition 1.3.1 (Regular expressions). R is a regular expressions if it is one of the following expres-

sions:
(1) a, where a € &
(2) e(e¢X)
(3) 0
(4) Ry U Ry, where Ry, Ry are regular expressions
(5) Ry o Ry, where Ry, Ry are regular expressions

(6) R;, where R; is a regular expression

If their is no parentheses, we follow the order of:

\ Kleene star \ — \ Concatenation \ — \ Union \

CHAPTER 1. REGULAR LANGUAGES 12
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Lecture 3

Remark.
Rt*=RR*, RTU {e} =R"

For () and e, we have
e ¢&: empty string

e : empty language (language without any string)

(OUe)1l* =01*U1*
(oup1* =01*
01 =1"0=10

Example. Here are some examples,

Strings that start and end with the same symbol:

0X*ouUl1¥*1uoul

o (XX)*: strings with even length

e RUO=R
e Roe=R
0 =1{e)

Floating point numbers can also be represented by regular expressions. For example,

(+U —Ue)(DD* UDD*.D* U D*.DD*), where D = {0,...,9}

Example.

72 € DD*

2.1 € DD*.D*
7.€ DD*.D*
.01 € D*.DD*

Lemma 1.3.1. Language by a regular expression =—> Regular (described by an automaton)

Proof. The proof is by induction,

e R =a € X can be recognize by

a
start %©—>®

N =({q1,9},3,6,q1,{¢2})
6(Q1ua’) = {Q2}
d(r,b)=0,r#qorb#a

CHAPTER 1. REGULAR LANGUAGES 13
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e R=¢
start @
N = ({Q1},E,6,q1,{q1})
6(q17a> = ®7va
e R=10

start @

N = ({q},%,0,9,0)
§(r,a) =0,Vr,a

e R=RiURy, R=R;0 Ry, R= R} have proof by NFA.

1.3.1 Convert a DFA to a regular expression

The idea is:
1° DFA — GNFA

2° Remove states from GNFA until only the start and accept states.

Question. Convert the following DFA into regular expression.

Answer. First, convert to GNFA:

start

CHAPTER 1. REGULAR LANGUAGES 14
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Next, is to remove the states one by one. We skip, so we can get the answer:
(a(aa Ub)*abUb)((ba U a)(aa Ub)*abUbb)*((baUa)(aa Ub)* Ue) U a(aa U b)*

which is very complicated. ®

Definition 1.3.2 (Generalized NFA(GNFA)). We define a GNFA as a 5-tuple

G = (Q, ¥, 0, gstart, Qaccept)

where
o Fis not a se, but a single accept state gqccept

o ¢ function is:

(Q - {qaccept}) X (Q - {qstart}) — R

where R is all regular expressions over X.

o Two new states:

Qstart — 40 with e

any q € F' = Qaccept With

Consider ¢vip is the state being removed

R

Ry

The new regular expression between ¢; and g; is

@ (R1)(Re)*(R3) U (Ra) ;@

We can wrote the whole process into a algorithm.

CHAPTER 1. REGULAR LANGUAGES 15



Lecture 4

Algorithm 1.1: CONVERT(G) —State-Elimination from GNFA to RE
Input: G = (Q,%,0,4qs,q.) a GNFA
Output: A regular expression R for the language of G

1 k< |Qf;

2 ; // number of states
3 if k =2 then

4 t return 6(gs,qq) ; // the (single) edge label from ¢s; to ¢,
5 Choose any gip € Q \ {¢s,qa};

=]

Q" Q\{aip};

7 Initialize §’ as the restriction of § to Q' x Q’;
8 foreach ¢; € Q' \ {¢,} do

9 foreach ¢; € Q' \ {¢s} do

10 Ry < 6(qi; Grip);

11 Ry = 6(rip, Grip);

12 R3 + 6(qrip, 45);

13 Ry < (g, q5);

14 | 6'(gisq;) < Ry U (R1 R3 R3);

15 G’ (Q/7 3,0, qs, Qa);
16 return CONVERT(G');

Lecture 4

1.4 Pumping lemma 2025-09-22

1.4.1 Non regular language

Some languages cannot be recognized by DFA such as,
{0"1" | n > 0}

We might remember #0 first, but # of possible n’s is 0o, so we have some method to prove that the

language is non-regular.

Theorem 1.4.1 (pumping lemma). If A is regular, Ip such that Vs € A, |s| > p,
dx,y, z, such that s = zyz and
1° Vi > 0,zy'z € A
2° |yl >0

3° lzyl <p

Proof. Skip, which is on the slides. |

CHAPTER 1. REGULAR LANGUAGES 16
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1.4.2 Example for Pumping Lemma

Question. Show that the language L = {0™1™ | n > 0} is not regular using the pumping lemma.

Answer. Now consider the string
s =0P1P

We know that |s| > p. By the lemma, s can be split into zyz such that
ry'z€ B,Vi>0, |y/>0, and]|zy <p

1° If y=0---0, then
zy=0---0 and z=0---01---1.

Thus,
zy?z #0 > #1.

Hence zy?z ¢ B, a contradiction.

2° If y=1---1, then similarly
Y’z ¢ B as #0 < #1.

3° Ify=0---01---1, then

ry*z ¢ B since it is not of the form 0*1*.

Note. Just pick one is sufficient to show the answer.

Question. Show that the language C' = {w | #0 = #1} is not regular using the pumping lemma.
Answer. We can use the situation in the pevious example, consider
s = 0P1P

We can’t proof the third condition due to C' = {w | #0 = #1} which just require the #0 = #1.
Then we can use the third condition

lzy| <p

which means y are strict into the first 0P we can only consider the first case.
lzy <p=y=0---0in s = 0P1P

Then,
zy’z ¢ C

Lemma 1.4.1. When using pumping lemma, we usually use contradiction, so we use
VpIds € A, |s| > p, [Vx,y,z ((5 =zyzAly| >0A|zy| <p) — Fi>0, zy'z ¢ A)]

Use the claim and the first, second condition to get the negation of the third condition.

CHAPTER 1. REGULAR LANGUAGES 17
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Question. D = {1"" | n > 0} is not regular

Answer. We pick
s=17 €D

Then, if s = xyz, |zy| < p, |y| > 0, we can get
P <lzyPz| <p*+p< (p+1)°

hence, xy?z ¢ D.

CHAPTER 1. REGULAR LANGUAGES
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Chapter 2

Context-Free Languages

Lecture 5

2025-10-20

2.1 Context-Free Grammars (CFG)

Which is more powerful, and can be used in compilers. A Grammar is a collection of substitution rules

that describe the structure of a language.

Example. Consider a grammar Gi:

A — 0A1
A— B
B — #

Here are the jargon terms:

e FEach of one is called a substitution rule.
o Variables (non-terminals): A, B (Capital letters)
o Terminals: 0,1, # (Lowercase letters, numbers, symbols)

o Start variable: A (the variable we start with)
The process of generating strings is called derivation. GG; generates 000#111 by
A= 0A1 = 00A11 = 000A111 = 000B111 = 000#111

We can show the derivation using a parse tree:

»>>>>>»

jan}

(a]

o
—w—

~

-

-
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2.1.1 Definition of CFG

The language of grammar G is denoted by L(G), for the language we discuss here,
L(Gy) = {0"#1" | n > 0}
Now we give the formal definition of CFG.
Definition 2.1.1 (Context-Free Grammar). We defined a CFG as a 4-tuple
G=(V,Z,R,S)
where
o V: Variables (Finite)
o ¥: Terminals (Finite)

o RR: Rules:
Variables — Strings of Variables and Terminals (including €)

e S € V: Start variable

For instance, for Gy,
Gl = ({Aa B}a {Oa ]-7 #}a Ra A)

where R is:
A—0A1|B, B—#
Notation. If u,v, w are strings and rule A — w is applied, then we say
uwAv yields uwv

denoted as
uAv = uwv

Notation. If
U=VOr U= U] = = Uy =V

then we write
V= U

Definition 2.1.2 (Language of a CFG). The language generated by a CFG G with start variable S is

LG)={weX|S=w)

CHAPTER 2. CONTEXT-FREE LANGUAGES 20
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2.1.2 Examples of CFGs
Question. Consider the grammar G2 = ({S}, {a,b}, R, S):
S —aSb|SS |e

What is L(G3)?

balanced parentheses.

Example. Cousider the grammar G3 = (V, X, R, S) where
o V = {{expr), (term), (factor)}
e X={+,x%,(,),a}
o R:

(expr) — (term) + (expr) | (term)
(term) — (factor) x (term) | (factor)

(factor) — ({(expr)) | a

Consider the string a + a x a:

a

Figure 2.1: Parse treeof a +a X a

Consider the string (a + a) X a:

E
\
T
— AT~
T F
|
F
|
E
70N
E T
\ \
T F
\
F
\
( a + a ) N a

Figure 2.2: Parse tree of (a +a) X a

CHAPTER 2. CONTEXT-FREE LANGUAGES
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Lecture 5

Note. The example above shows that CFGs can express operator precedence and associativity.

2.1.3 Design of CFGs
We can design CFGs in many methods. Here are some common patterns:
e Combining smaller parts:
Example. L(G) = {a"b" | n >0} U {b"a™ | n > 0}
We can let the rule R be:

Sl—>a51b|5
Sy — bSaa | e
S—>51|SQ

e From DFA:

Lemma 2.1.1. For any regular language A, there exists a CFG G such that L(G) = A. The
rules of CFG can be

R; — aR; for each transition 6(g;,a) = g;

R, — ¢ ifqiEF

The difference is that CFG allows the format
R, — aij

But DFA only allows
R, — CLRj

where we treat R; as the state and let 6(R;,a) = R;.

2.1.4 Parse Trees and Ambiguity
If we let the rules of G5 be
(expr) — (expr) + (expr) | {expr) x (expr) | ({expr)) | a

We can see the following two parse trees for a + a X a:

Figure 2.3: Two different parse trees for a + a X a under ambiguous grammar

This is called ambiguity. A CFG is ambiguous if there exists some string with two or more different
parse trees. The above G5 is unambiguous, G% with new rules is ambiguous.

CHAPTER 2. CONTEXT-FREE LANGUAGES 22
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However, an unambiguous grammar may also generate same parse tree but different derivations. Consider

G32
o We can do derivation
(expr) = (expr) + (term)
= (expr) + (term) x (factor)
o We can also do derivation
(expr) = (expr) + (term)
= (term) + (term)

which is not considered ambiguous. So we have the following definition:

Definition 2.1.3 (leftmost derivation). A leftmost derivation is a derivation where at each step,

the leftmost variable is replaced.

Then we can have the formal definition of ambiguity:

Definition 2.1.4 (Ambiguous). A is ambiguous if w € A and there exists two or more different

leftmost derivations for w.

Definition 2.1.5 (Inherent Ambiguity). A language is inherently ambiguous if it only has ambigu-

ous grammars.

Example. Consider the language

L={dVc|i=jorj=k}

We can consider the string a?b?c?. It can be generated by two different leftmost derivations. First we

consider
S = Sl | SQ
o Using ¢ = j:
Sl—>AC
A—aAb|e
C—cCle

the derivation is

S1 = AC = aAbC = aa AbbC = aabbC = aabbcC = aabbce

e Using j = k:
SQ—>A/CI
A" —aA e
C'"—=bC'c|e

the derivation is
Sy = A'C' = aA'C’ = aaA'bC'c = aabbC’cc = aabbce

CHAPTER 2. CONTEXT-FREE LANGUAGES 23



Lecture 6

Lecture 6

2.2 Chomsky Normal Form

We want to simplify the structure of context-free grammars. One useful normal form is the Chomsky
Normal Form (CNF).

Definition 2.2.1 (Chomsky Normal Form). A context-free grammar is in Chomsky Normal Form

if all its production rules are of the form:
e A — BC, where A, B,C are non-terminal symbols and B, C are not the start symbol.
o A—a,whereaeX (e¢X)

e S — ¢ is allowed, where S is the start symbol.

Example. Convert the following CFG to CNF:

S — ASA | aB
A—B|S
B—ble

First, we add Sy as the new start symbol:
So—S S—ASA|aB A—B|S B—b]|e
Next, we remove the e-productions B — e:
So—S S—ASA|aB|la A—B|e|S B—=b
Next, we remove the e-productions A — e:
So—=S S—ASA|aB|a|AS|SA|S A—B|S B—=b
Next, we remove single production S — S:
So—S S—ASA|aB|a|AS|SA A—B|S B—b

Next, we remove single production Sy — S:

So = ASA|aB|al| AS

SA S— ASA|aB|a|AS|SA A—B|S B—b
Next, we remove single production A — B, A — S:
So— ASA|aB|a| AS|SA S — ASA|aB|a|AS|SA A—b|ASA|aB|a|AS|SA B—b

Finally, we convert to CNF by introducing new variables for terminals and breaking down long produc-

tions:
So— AA; |UB|a| AS | SA
S— AA; |UB|a| AS| SA
A—b|AA |UB|a| AS|SA
A — SA
B—b

U—a

CHAPTER 2. CONTEXT-FREE LANGUAGES 24
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2.2.1 Procedure of Converting CFG to CNF

To convert any CFG to CNF, we can follow these steps:
1° Add a new start symbol Sy with the production
SO — S
2° Remove all e-productions, except for the start symbol, i.e. A — e (A # Sp), for any

co- = uwAv

add the production
cee > UY

3° Remove single productions of A — B where A, B € V /{S}.

A—B, B>y = A-—~y

Remark. A — v can’t be a unit rule previously removed.

4° Convert remaining productions to CNF:
A= uus--up u, €VUX

and
if k=1, thenu; € &

Convert as follows:

A— u1A1

A1 — u2A2

Replaced every terminal u; € ¥ with a new variable U;:

U, —u; u; €%
2.2.2 Infinite Loop in Converting

Example. Consider the grammar:

S—Ble
B—S|e
We first add a new start symbol:
So—S S—=Ble B—S]|e¢
Next, we remove the e-productions:
So—S|le S—=B B—S]|¢
Next, we remove the e-productions again:
So—S|le S—»Bl|le B—=S

This process will continue indefinitely. The reason is S — € has been handled. So there is no need to
add S — e.
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2.3 Pushdown Automata

We now introduce the machine that recognizes context-free languages (CFL), called Pushdown Automata

(PDA). PDA is a machine with a stack, which is a way to store previous states.

CPU

O L[T[0 ] imput

Figure 2.4: DFA or NFA

CPU

0l1f1|0 .- |input
stack

v
—_
—_
o

Figure 2.5: Pushdown Automata (PDA)

Example. Cousider the language A = {0"1" | n > 0}. We can design a PDA to recognize A:

Figure 2.6: PDA for A = {0"1" | n > 0}

$ is a special bottom stack symbol to indicate the initial state of the stack. The PDA works as follows:

e g2 — 2, put 0 into stack

e g2 — g3 and g3 — g3, read 1 and pop 0 up

If the input is 0011 which is same as €0011e, the process is as follows:

q,0,¢

g2, {$},0
72,{0,$},0
¢2,{0,0,$},1
q3,{0,8},1
g3, {8}, e
qs, {}

Notation. {}: contents of the stack before processing the input character.
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2.3.1 Formal definition of PDA

Definition 2.3.1 (Pushdown Automata). A pushdown automaton (PDA) is a 6-tuple
(@,%,T,6,q0, F)
, where
e (Q: States
e X: Input alphabet
e I': Stack alphabet

e §: Transition function
QXX xT.—>P(QxT,)

e go € Q: Start state

e F C Q: Set of accepting states

The definition of the above PDA for A = {0"1" | n > 0} is as follows:

o Q={q1,92,43,q4}

. =101}

« I'=4{0,$}
* go=1q1

o F={aq,q}

For the the transition function, we care about three things:
o Current state
e Current input
e Top of the stack

The transition function § works as follows:

0 1 €
0 $ € 0 $ 0 $ €
q1 {(q2,9)}
o {(a2,0)} | {(gs,e)}
a3 {(as,2)} {(ga,2)}
q4

For example, we say the transition of go — g3 to be

5((]27 17 0) = {(qg,i‘:)}

CHAPTER 2. CONTEXT-FREE LANGUAGES
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2.3.2 Nondeterministic situation

Example. Design a PDA for the language B = {a'b’c* | i,j,k >0 and i = j or j = k}.

b,a — ¢ c,E— €

be — ¢ c,a — €

Figure 2.7: Nondeterministic PDA

We input a?bc?, to illustrate the process, we can build the following computation tree:

@l {8} _g3{8}  qld  as{$} {5} @z0

a a/ ‘ x
q2{a75} a3{a, B} qs{a, B} q6{a, B}

N T

g2{a,a,$} gs{a, a,$} gs{a,a,$} gs{a,a,$}
b /S VRN
Q3{(L,$} q5{a,a, $} QG{avaa $}
© |
q6{a, $}

¢ 7N

Q6{$} q:0

Q

| Example. Design a PDA for the language C = {ww® | w € {0,1}*}.

| Idea. Symbols pushed to stack, nondeterministically guess middle is reached

Figure 2.8: PDA for C = {ww® | w € {0,1}*}
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2.3.3 Converting CFL to PDA
Example. Convert the CFG G to PDA that recognizes L(G):

S —aTb|b
T—Tale

Idea. For rule substitution, we replace the left-hand side variable with the right-hand side string
i.e.

A—~v = pop A from stack, push ~ to stack

if there are multiple productions for A, we push them in a reversed way.

Figure 2.9: PDA for CFG G

Remark. There are two transitions we must add to process the "input":

a,a — ¢

b,b— ¢

The procedure of converting CFG to PDA is as follows:

Gstart = ioops 19,8} = a1, {b,8} = q2, {T', b, 8}
= Qoops 10, T, 6,8} = qioop, 1T, b, $}

= 43,{a,b,%} = GQoop, {T,a,b,$}

5 gs, {a,a,b,$} 5 Qoop, {1, a,a,b,$}

5 g3, {a,a,a,0,%} = qioop, {1, a,a,a,b,$}

5 Qoops {@, @, 0,5, 3} 5 qioop, {a,a, b, $}

= Qloops 18,0, 8} = Gloop, {6, $}

b, €
— loop> {$} - Gaccept
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Proposition 2.3.1. Even with a non-deterministic setting, we ensure that only strings generated by
this CFG can be accepted by the PDA

o A string is accepted only if all characters are processed (this is part of the PDA definition!)

o We have $ to ensure that the stack is empty in the end

2.3.4 Converting PDA to CFL

Lemma 2.3.1. Language recognized by PDA = context free

Note. We need PDA to satisfy
1° Single start state
2° Stack empty before accepting

3° Each transition push or pop, but not both

Idea. For each pair of states p,q € @ of a PDA P, we have Ay, and

Apq generates x = P from p with empty stack to ¢ with empty stack, reading x
First, we discuss how to handle transitions
VD, q;r € Q, Apg = AprArg
We let the
e z-axis: input string

e y-axis: stack height

>
>

b T q

Figure 2.10: PDA transition Ay, — AprArg

If we can go

from p to r without changing stack
and

from r to g without changing stack
then we can do

from p to ¢ without changing stack

CHAPTER 2. CONTEXT-FREE LANGUAGES
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Next, we have
Vp,q,m,s €Q, a,be X, tel

If

)

(r,t) € 6(p,a,e) and (g,¢) € §(s,b,t)

we discuss how to handle transitions
Apg = aAysb

Then we have

r
! !
ot t
| |

P a b 4

Figure 2.11: PDA transition Apy — aA;sb

Finally, we have the following base case:
VpeQ, App — €
To follow the condition (1°), we give a new example

Example. Consider the language L = {0"1" | n > 1}.

Now ¢; is not an accept state

Figure 2.12: PDA for A = {0"1" | n > 1}

Consider two elements in T’

then we can get the rule
Ay — Ags

CHAPTER 2. CONTEXT-FREE LANGUAGES
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o« t=0
p r s q t a b
2 2 2 3 0 0 1
2 2 3 3 0 0 1
then we can get the rules
A23—)0A221
A23—>0A231

Other rules: 64 rules

An — Andn
A1 — ApAs
A — A13Az
A — AiAa

and

A11—>€
A22—>€
A33—)5

A44—>€

2.3.5 Procedure of converting PDA to CFL

Proposition 2.3.2. Given a PDA

P = (Q7 Ea F7 57 q0, {qaccept})

We construct a CFG with variables

var(G) = {Apg | p,q € Q}

and start variable
S=A

qoqaccept
With rules

1° Single start state

2° Stack empty before accepting

3° Each transition push or pop, but not both

A new start gs — qs with €, — $, and for any ¢ € F, we have €,a — € back to ¢, Ya € X. Then
from any ¢ € F', we do €,$ — ¢ to q,
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start H s

Figure 2.13: PDA with single accept state and empty stack before accepting

The new one will become

g,a—¢ &,b—e

start
‘ g,e—$ .

g,a—¢e eb—e

These is not enough to ensure condition (3°), we can do some modifications:

o To have each transition either push or pop (but not both), replace

a,a—b
q— Q2
with the pair
a,a—e g,e—b
g —— g3, g3 —— Q2.
o Likewise, replace
a,e—e
QG — 42
with
a,e—=X e, X—e
q1 ? q3, qs3 ? q2,

where X is a fresh stack marker introduced for this simulation.

For another example, consider the PDA

G start
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The new PDA will accept the string a but the original PDA rejects it. Hence, we need to modify
something else:

e A new start ¢, — gy with e,e — $
o A new state gpop that have €,a — € back to gpop, Va.
o For ¢ € F, add a transition €, — ¢ from ¢ to gpop

o Add a new accept state g, and a transition ¢, $ — ¢ from gpop to ¢q

Figure 2.14: PDA with single accept state and empty stack before accepting
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2.4 Deterministic Pushdown Automata

Lecture 7

PDA is non-deterministic in general. However, there is a special class of PDA called Deterministic 2025-11-03
Pushdown Automata (DPDA). From Ch.1 we know

DFA = NFA

but
DPDA # PDA — CFL # DCFL

Definition 2.4.1 (Deterministic Pushdown Automaton (DPDA)). A deterministic pushdown automa-
ton (DPDA) is a 6-tuple
M = (Q7E7F765q0aF)

where

Q@: States

Y.: Input alphabet
o I': Stack alphabet

e ¢: Transition function

QxY.xT.— (QxT)u{0}

e qo € Q: Start state

e F C @Q: Set of accepting states

To build a DPDA, we first look at the different between PDA and DPDA.

As previously seen. For PDA,

§:QxX. xT'. —»P(QxT,)

Note. In DPDA, for Vg € Q,a € ¥, x,v € I', at most and at least one of the following is true:
8(q,a,z) = (p,7), 6(a,a,6) =(p,7), d(g,e,2) =(p,7), 6(q,€,¢) = (p,7)

the rest must be 0.

2.4.1 Acceptance, Rejection of DPDA

The Rejection of DPDA is similar to PDA, which should only happen when
e Not end at an accept state after the last symbol.
« DPDA fails to read the input

1. pop an empty stack

2. Endless s-transition
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Example. L = {0"1" | n > 0}

Figure 2.15: DPDA for L = {0"1" | n > 0}

The Transition function is defined as follows:

0 1 €
0 $ € 0 $ €]0 $ €
a0 0 0 0 o 0|0 0 (g2,9%)
|0 0 (g2,0)]| (g3e) ¢ 0|0 0 0
| ¢ 0 0 (g3,6) O 0|0 (qa€) 0
qa | v  Gr 0 qr o 0|0 0 0
& | & 0 @ g 0|0 0 0

To find this transition table, for instance,

e consider the state q:

3(q1,e,¢) = (q2,9)

then we can implies that

5(Q17a?7) = 5(q1a a76) = 5(q1a€77) = ®7

e consider the state gs:

Vae X ={0,1}, veI'={0,%}

5(Q27 170) - (Q3>5)

then we can implies that

due to

Formally we have

0

€

0

$

0 $
q2 @ @ (qQa 0)

(g3,€)

#0

€
0

=| O
=L N
=| ™

5((12; 178) = 5(Q2757$) = 5(6127575) = @

6(q2,1,%) = (ar,e)

For the string 011, the computation of the DPDA is as follows:

Follow the graph,

@S {8 a2 02, {0,8) @ = g5, {$} @1 = qu, 0

5(qa,1,€) and §(qq,€,6) =0

hence, the DPDA rejects 011.
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The Church-Turing Thesis

Lecture 8

2025-11-10

3.1 Turing Machines

As previously seen. To discuss the computability of problems. We need a more powerful model.

We already have seen
o Finite Automata (FA): with limited memory (states)
o Pushdown Automata (PDA): unlimited memory with LIFO structure (stack)

We now introduce a new computational model called Turing Machine (TM), which has an unlimited

tape as memory.

(O a0 ] e
Figure 3.1: Illustration of a Turing Machine
A Turing Machine consists of these properties different from FA and PDA:
o write/read tape
o head that can move left/right on the tape
o unlimited tape length

« reject/accept take immediate effect

 machine can never halt

Example.
B = {w#w |w € {0,1}"}

Remark. We can proof that this language is not CFL by pumping lemma for CFL.

Notation. L is the blank symbol on the tape.
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Idea. Zig-zag to the corresponding places on the two sides of the # and determine whether they

match.
e Scan to check if ther is a #.

e Check w and w if they match.

~

011000#011000U
e

x11000#011000U

-~
11000#211000U

Figure 3.2: Illustration of algorithm

Definition 3.1.1 (Turing Machine (TM)). A Turing Machine is a 7-tuple
M = (Q,%,T,6,qo, Gaccept , Greject)
where
e (): States
o ¥: Input alphabet, where Ll ¢
o I': Tape alphabet, where ¥ C I'and U e T’

e ¢: Transition function
0:QxTI' = QxT x{L,R}

e o € Q: Start state

® qacccpt € Q

® (reject € Qa Qreject 7é Gaccept

The input
W= wiwsy - W, € NF

will be put in the position 1,2,--- ,n of the tape, and the rest of the tape is filled with L.

Example.
L=1{0*|n>0}

Idea. Cross off every second, and check if the remaining is even (except the last one).

CHAPTER 3. THE CHURCH-TURING THESIS
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The procedure should be:

.
90
5
4o

50

left — right, make remark on every second 0

if step 1° left with only one unmarked 0, accept

if step 1° left with odd #0 left, reject

move head to the leftmost

go to step 1°

The definition of the machine is

0—L

Q = {q07 41,492,943, 44,45, Qaccept qreject}
% ={0}
r'={0,z,U}

Notation.

Consider the input 0000:

Figure 3.3: TM for L = {0%" | n > 0}

0R=0->0,R

q10000  Ug2000 Uzq300 Uz0q40 Uz0zqs
Uz0gsr Uxgs0x Ugsx0x g5 Ux0xr UgexOx
Uzrg0x Uzxqgsz Urxxgsl Uzxgsx Uzgsxx
Ugsrxxx g5 Uxxx Ugaxxx Uzgaxx Uzzqox
Uzxrqa Uzrzx U g,
The transition function table is as follows:
0 X L
@ | @2, U R Greject: T B Greject, U, R
g3, %, R ¢, 2, R Qaccept: U, R

q2

CHAPTER 3. THE CHURCH-TURING THESIS
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Note. There is no need for transition for gaccept and gGreject since the machine halts when it enters
these states.
Idea. We can get the design idea of Turing Machine

e @1 : mark the start by L

— first element must be 0, otherwise, reject

— Using U, so the start is known
e @2 — q3: handle initial 00
e g3 — q4 — g3: sequentially 00 — Oz

— If not pairs (e.g., 0x0x0x), fails

— This is the place of checking if # of remained zeros is even
e g3 — @5 — g2 back to beginning
o first First 0 (or L) is considered the single final 0

q2_>"'_>q2_>"'_>qaccept

check if a single 0 is left in the string.

3.1.1 Configuration of Turing Machine

Definition 3.1.2 (current configuration). The current configuration of a Turing Machine is repre-
sented as
uqu

where
e u € I'*: the string on the left of the head
e ¢ € (Q: the current state
e v € I'*: the string on the right of the head

The head is reading the first symbol of v. If v = ¢, then the head is reading a blank symbol LI.

Definition 3.1.3. a,b,c € I', u,v € I'*, ¢;,q; € Q then the transition from configuration

o If 5(qla b) = (q_]7 G, L)a then
uagq;bv - ugjacy

o If 6(¢;,a) = (gj,b, L), then
uagq;bv = uacq;v

CHAPTER 3. THE CHURCH-TURING THESIS
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3.1.2 Turing Recognizable and Turing Decidable Languages

Definition 3.1.4 (Turing Recognizable). A language L is Turing recognizable if some Turing Machine

M recognizes it.
For a Turing Machine there are three possible outcomes:
o Accept the input by entering gaccept
» Reject the input by entering greject
e Loop forever without halting

A language is very difficult to difficult to decide if the TM loops forever on some inputs. We now define
a more restricted type of model, called Decider.

Definition 3.1.5 (Turing Decidable). A language L is Turing decidable if some Turing Machine M

decides it.

We will discuss more about Decidability in later chapters (Ch.4).

3.1.3 Example of Turing Machine

| Example. L = {w#w | w € {0,1}*}

start

0,1,z — L

Figure 3.4: Turing Machine of L = {w#w | w € {0,1}*}

Remark. Links to ¢, are not shown
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Simulate 01#01

q101#401
rlgs#xl
rrqs#al
TXQeHxT

rrHrrqsl]

Idea. The diagram:

Idea. The procedure should be:
1° check if the input is aTbTct
2° back to the leftmost a

3° fix an a, for each b, cross off a ¢

xq21#01
xqr14#xl
rr#qsal
rqrrH#ar

rxHrr L q,

x1ge#01
qrrl#txl
rrH#rgsl

Trq #Hxx

q1 —>q2 — g4 — ge

check 0 at the same position of the two strings

q1 —q3 — g5 — ge

check 1 at the same position of the two strings

Example. C = {a’b/c* |ix j =k, 4,5,k > 1}

4° store b back, cancel one a, repeat step 3

zqi1#xl
TxHqeTT

TxHqsTT

e Step 1 can be done by a DFA (as DFA is a special case of TM).

e Step 2 can be done by moving left until U is reached.

e Step 3 is similar to previous examples.

Example. E = {#z1#x2- - #x1 | z; € {0,1}*, z; # z;}

Idea. Sequentially compare every pairs

For z;, x;, mark #’s strings by # i.e.

L1T2,T1T3, - -
T2X3,y...,T2X]
Ty—121

<, L1

#ml#xg#xg : x1 and x3 are compared

We can copy z;, «; to the right end of the tape and compare them there with the pattern of w#w.

CHAPTER 3. THE CHURCH-TURING THESIS
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Lecture 9

2025-11-24

3.2 Multi-tape Turing machines

3.2.1 Variants of Turing machines
Example. The transition function may be defined as

0:QxI—=QxTIx{L,R,S}

Notation. S stands for “stay”, meaning the head does not move.

This kind of Turing machine can be simulated by a standard Turing machine.

Q1aa—>QQ7b>S Eq17a—>qtempab7R

Gtemp, Y — q27’Y,L V’Y el

3.2.2 Multi-tape Turing machines

In this variant, there are multiple tapes, each with its own head.
e Input: In the first tape.

e Other tapes: Blank initially.

Definition 3.2.1 (Multi-tape Turing machine). Transition function:

§:QxTF - QxT*x{L,R,S} (for k tapes)

Example. Given w = 0?7, n > 1 = Generate ww.

Idea. We have the following simulation:
e Copy w into the second tape.
o Check if |w]| is even.

e copy w from the second tape to the first tape (append).

Figure 3.5: Multi-tape Turing machine to compute ww from w = 02"
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For the simulation details,
e go — ¢1: Use U to indicate the beginning of the second tape.
e loop in ¢;: Copy w from the first tape to the second tape.
* g2 Qg3 — Q2
1° Check if length of w is even.

2° Head of the first tape zig-zag between last 0 and then LI after.

3° Head of the second tape moves to the beginning.

Remark. If length of w is even, we will at g3 when reaching the beginning of the second tape.

e ¢4: copy w from the second tape to the first tape (append).

Below is the illustration of the simulation 0000:

0000 0, 000 0000, U
ORI udig oy uooodio
000, 0 00 00gs 0O 00gq20 0000 gs
uo042o0 U0g;00 Uga00 0 g3 U000
0 0000 g 00000 000 qq

0gs 000U 0000 g4

00 0, 00 000, U
oouuu udtuu uoodiu
00, 0 0 00gs 00g20
uo4o Ugs 00 @ U0 0

Note. Due to the properties of “deterministic”,
5(q07 07 0)7 5(q05 07 |—|) 5((]07 ua 0)7 5(q0a ua U)

those not specified transitions go to g.
3.2.3 Multi-tape TM = Single-tape TM

CPU

O[]0 ] tae
[alafcla---tape2 |PU
tape3 #loli|1|---|#lalale]l---|#[0]0

Figure 3.6: Simulation of multi-tape Turing machine by single-tape Turing machine

e # can be used to separate different tapes.
e ¢ can be used to indicate the head position of each tape.

o IV ={I. T}
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Example. Right shifting a sequece w.

Figure 3.7: Single-tape simulation Turing machine to right shift a sequence

Note. Because I is finite, the simulation must succeed by add state for each v € T.

3.3 Nondeterministic Turing Machines

Definition 3.3.1 (Nondeterministic Turing machine). Transition function:
0:QxT —=P(QxT x{L,R})
In NTM, by definition w is accepted if any branch works, which means unless all branches are finite,
NTM — accept or loop

Thus, NTM is an “acceptor”.

Example. A = {w contain aab}
a,b—a,b, R

— R a— R
start q0 a /(1—1\

Figure 3.8: Nondeterministic Turing machine to accept A = {w contain aab}

| Note. Determine where aab starts nondeterministically.

| Example. L = {0™ | n-composite number}

o Nondeterministically guess p, g, sequentially try from 2 to n — 1.

e Checkifn=pxgq
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3.3.1 NTM =TM

A language is Turing-recognizable = it is recognized by a NTM, due to TM being a special case of NTM.

Proof done for < direction.

For the other direction, we need to simulate NTM by TM. Like NFA we use a tree structure to represent

the computation finite # branches. To traverse the tree, we can use BFS or DFS.

Remark. BFS is preferred, because DFS may get stuck in an infinite branch.

CPU —\L

0f1]1]1]{0---|tapel

x|x|1|1[0--- |tape 2

4

1123123 --- |tape 3

Figure 3.9: Simulation of NTM by TM using multi-tape Turing machine

e Tape 1: Store the input, never alter.
o Tape 2: Simulate the current branch up to certain layer by copying Tape 1.
e Tape 3: Store the path to a node.

Definition 3.3.2. Suppose max # branches is 3 at each node. If the content of the 3rd tape

is 231 that means
root — 2nd child — 3rd child — 1st child

Hence, NTM can be simulated by 3-tape TM, and we have shown that multi-tape TM can be simulated
by single-tape TM. Thus, NTM = TM. |

Corollary 3.3.1. NTM is a decider if all branches halt on all inputs.
Language decidable < some NTM decides it
Proof. We separate into two directions.
= One TM decides it and a TM is an NTM. This TM halts on all inputs (one branch)
< Now NTM terminates on all branches. We can construct a TM to decide the language

— each branch is finite every input halts 3 a finite max length.
— # branches finite. The tree to process this input is finite.

— Thus the three-tape TM used earlier can accept/reject the input in a finite number of

steps.
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3.4 Hilbert’s problems

Informally, an algorithm is a collection of instructions. Not until 1900 did Hilbert propose 23 unsolved

problems in mathematics. The 10th problem is:

Is there a general method to determine whether a given polynomial equation with integer

coefficients has an integer solution?

Hilbert didn’t use the word “algorithm” but “general method”. However, Hilbert explicitly asked the

algorithm be “devises”.

3.4.1 Church-Turing thesis

This is proposed by Alonzo Church and Alan Turing in 1936.
Any function which would naturally be regarded as computable can be computed by a Turing

machine.

Definition 3.4.1.

Intuitive Algorithm = Turing machine algorithm

3.4.2 Hilbert’s 10th problem

Using the Church-Turing thesis, we have a question:

Question. Define

D = {P | P : polynomial with integer root}
is D decidable?
We first simplify the problem to one variable case.
Dy, = {P | P: polynomial of z with integer root}

If we try all integers one by one, it may not halt if no integer root exists. Thus, D; is Turing-recognizable
but not decidable.

However, it can be proved that roots of a 1-variable polynomial is within the range

max |¢|

e

~M<z<M, M=+k

where
e k: # of terms
e ¢;: coefficients of the polynomial
e c1: leading coefficient

For instance, for 423 — 222 + x — 7, we have

M:j:4-£:j:7
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The multi-variable case is much more complicated. In 1970, Matiyasevich proved that no such algorithm

exists. Thus, we have the conclusion:

Theorem 3.4.1 (Matiyasevich, 1970). D is not decidable.

3.4.3 Description of Turing machines

A Turing machine can be describe in 3 levels:

High-level description: Describe the operations of the Turing machine without manage the tape
and head.

Implementation-level description: Describe how the Turing machine move the head.

Formal description: Specify the states, input alphabet, tape alphabet, transition function, start
state, accept state, and reject states of the Turing machine.

Example. Describe a Turing machine that decides the language

A={(G) | G: a connected undirected graph}

High-level description: We separate into three steps.

1° Mark node in G.
2° Repeat until no new nodes marked:
— For each node in G, if it is marked, mark all its neighbors.

3° If all nodes marked: accept, otherwise: reject.

e Implementation-level description:

<G> = (17 2, 3’4)((17 2)’ (2’ 3)7 (3’ 1)) (174))

Figure 3.10: Graph representation on tape

is the input format.

— The first step is to check if the input is in the correct format.

— In the first step we begin with seeing if the first part of the input (G) includes distinct numbers
(as node IDs should be different)

— This is similar to an example before.
{#Ha1#oo# - wp# |2 € {0,1}, 2; # 25}

— Then we can talk about how the head is moved.
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4.1 Decidability 2025-12-1

If we have a algorithm, we want to check if the problem is solvable or not on the computer. We need a

TM to decide it, i.e. accept or reject in finite # steps.
Definition. We first give some definitions of the languages.
Definition 4.1.1 (A). A is the language

A= {(M,w) | M accepts w}

Definition 4.1.2 (E). E is the language

E = {(M)|M: L(M) = 0}

Definition 4.1.3 (EQ). EQ is the language

EQ = {{My, Mz) | My, My : L(M;) = L(Mz)}

Definition 4.1.4 (HALT'). HALT is the language

HALT = {{M,w) | M : L(M) halts on w}

Definition 4.1.5 (REGULAR). REGULAR is the language

REGULAR = {(M) | M : L(M) is regular}

Definition 4.1.6 (ALL). ALL is the language

ALL = {(M) | M : L(M) = =*}
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4.1.1 Apra is Decidable
Example. Consider the language

Apra = {(B,w) | B is a DFA that accepts w}
The input of the problem is a pair of a DFA and a string, note that both can be encoded as a string.
Idea. Input: (B,w) where B is a DFA and w is a string.

1° Simulate B on input w.

2° If B accepts, then accept. If B rejects, then reject.

We first put
B = (szaéaq(%F)

into the tape, then we put w after it. Then checking if w € ¥*. Then simulate w according to §. After

reading the whole w, check if the current state is in F'.

4.1.2 Anra is Decidable

Example. Consider the language

Anra = {(B,w) | B is an NFA that accepts w}

We can use the subset construction to convert NFA to DFA, then use the previous algorithm.

4.1.3 Agrgx is Decidable
Example. Consider the language
Argx = {{(R,w) | R: regular expression generates w}

We first convert R to an NFA B using the standard construction, then use the previous algorithm.

Remark. We have a procedure to convert a regular expression to an equivalent NFA. Then we can
use the algorithm for Axpa to decide Argx.

The key idea is that we have procedures to convert of regular languages is in finite steps.

4.1.4 Epra is Decidable

Example. Consider the language

i.e. A accepts no strings.

Idea. Input: (A) where A is a DFA.
DFA accepts something < reaching a final state from g0 after several links

1° Mark qq.

2° Repeat until no new state is marked:
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 For each transition 6(q,a) = p, if ¢ is marked, then mark p.

3° If no q € F is marked, then accept. Otherwise, reject.

There are at least one new ¢ € ) marked in each iteration, so the algorithm halts in at most |Q| iterations.

4.1.5 FEQpra is Decidable

Example. Consider the language

EQura = {(A,B) | A, B: DFA, L(A) = L(B)}

Idea. Let a DFA C be the exclusive or of A and B.

L(A) = L(B) & L(C) =0

Exclusive or of A and B

Formally, we can construct C' as follows:

e Bis DFA = B is DFA.
« A, B DFA = AN B is DFA.

4.1.6 Acrg is Decidable

Example. Consider the language

Acre = {(G,w) | G: CFG that generates w}

Note. The possible derivation of w is oo, but for a CFG in Chomsky Normal Form (CNF), any

derivation of w has exactly 2|w| — 1 steps. If ¢ = |R|, the number of variables, then the number of

possible derivations is at most ¢2/*I=1,

Idea. Input: (G, w) where G is a CFG.
1° Convert G to an equivalent CFG G’ in CNF.

2° Check all ¢2I*I=1 possible derivations.
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4.1.7 FEcpg is Decidable

Example. Consider the language

Ecrc = {(G) | G: CFG, L(G) =0}

Idea. Input: (G) where G is a CFG. We use the bottom-up approach to find all variables that can

generate some terminal strings.

e From A — a we search for

We repeat this
1° Mark all the terminals.

2° Repeat until no new variable is marked:

o if
A— U Us -+ - Uy
and
all Uy, Us, ..., Uy are marked
then mark A.

« If start variable is not marked, accept. Otherwise, reject.
Number of variables is finite, so the algorithm halts in finite steps. Furthermore, each iteration is finite

procedure with checking all the rule.

4.1.8 FEQcrg is Undecidable
Example. Consider the language

Because CFL is not closed under the complement operation, we cannot use the same idea as EQpra.-
We should use the technique of reduction to prove it is undecidable (Ch.5).

Converting PDA to TM is not really work, due to the fact that PDA has infinite stack, one can be stuck
in the operation of push() some symbols. We can only find the corresponding grammar G for the CFL.
Then running the TM that decides Acpg on input (G, w).

Turing-recognizable
decidable

contex-free

regular

Figure 4.1: Classes of Languages
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4.2 Halting Problem

In program verification is in general undecidable (unsolvable). Here is a classic example of undecidable

problem, the Halting Problem.

4.2.1 Diagonalization Method
Definition 4.2.1. Two set are equal if elements can be paired up.

Giving an example

Definition 4.2.2 (one-to-one function). A fucntion f : A — B is one-to-one if

F(a) # F(b) it a#b
Definition 4.2.3 (onto function). A function f: A — B is onto if
Vb € B, Ja € A such that f(a) =b

Definition 4.2.4 (correspondence). A correspondence between two sets A and B is a function
f: A — B that is both one-to-one and onto.

Example. Consider the function

f(a) = a?, where A = (—00,00) and B = (—o00, o0)
This is not an onto function because for b = —1, there is no a € A such that f(a) = b.
Example. Consider the function

f(a) = a*, where A = [0,00) and B = [0, c0)

Becoming an onto function. However, it is not one-to-one because f(1) = f(—1) = 1.
Example. Consider the function

f(a) = a®, where A = (—00,00) and B = (—o0, o0)
This is a correspondence because it is both one-to-one and onto.

Remark. Correspondence is a way to pair the elements in two sets. If there is a correspondence

between two sets, then they have the same cardinality (size).

Definition 4.2.5 (countable). A set A is countable if there is a correspondence between A and N

or a finite subset of N.
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Theorem 4.2.1. Consider the set of rational numbers Q, where
Q= {@ ‘ m,n € N}
n

which is countable.

Proof. Here is one way to list all the rational numbers:

@
ol

3 3
5 6
4 4
5 6

\
wlot
N[
ot
oot

Figure 4.2: Counting the rational numbers

However, for the set of real numbers R, it is uncountable. We can use the diagonalization method
to prove it. |

Theorem 4.2.2. Consider the set of real numbers R, which is uncountable.

Proof. Assume R is countable, then we can list all the real numbers, we can construct a table of

the corresponing decimal as follow:

Index Real Number

1| 0.dysdigdradisdys ...
0.d21d22d23d24dss . . .
0.d31d32d33dadss . . .
0.d41d42dszdaadys . . .
0.ds1ds2d53d54d55 - -

T W

Figure 4.3: Listing all the real numbers

Then we consider a new real number r = 0.ryryr3 ... where

5 if the i-th digit of f(i) #5

=
" 16 if the i-th digit of f(i) =5
By construction,
r# f(n), YneN
But r € R, which contradicts our assumption. Therefore, R is uncountable. |
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Remark. To avoid
1=0.999999...

we can simply avoid using 0,9 in our construction.

4.2.2 NOT Turing-Recognizable

We known that ¥* is countable, because we can list all the strings in order of length. Also, the set of all
TMs is countable, because each TM can be encoded as a string (i.e. set of TMs is a subset of X*).

Now, let
L : set of all languages over %

B : set of all infinite binary sequences

For any language A C ¥*, we can construct a corresponding infinite binary sequence x4 = b1bobs ...

where
1 ifs; e A
where s1, sa, S3, ... is the enumeration of all strings in ¥*. This construction is in diagonalization way.

This gives a correspondence between L and B. Since B is uncountable (by diagonalization method), L

is also uncountable.

Each Turing machine corresponds to a language that it recognizes. Since the set of all TMs is countable,
the set of all Turing-recognizable languages is also countable. Therefore, there are languages that are

not Turing-recognizable.

4.2.3 Halting Problem is Undecidable

Racall that halting problem is defined as

Theorem 4.2.3. We define the language
Ay = {(M,w) | M : TM that accept w}

The language Aty is undecidable.

Proof. Assume H is a TM that decides ATy. Then we get

accept if M accepts w
H((M,w)) =4 _
reject  Otherwise

Then we can construct a new TM D with H by running it on input (M, (M)). The behavior of D
is defined as follows:
accept if H((M,(M))) = reject

D((M)) =4 ,
reject if H((M,(M))) = accept
which can be simplified as

accept if M rejects (M)
D((M)) =9 ,
reject  if M accepts (M)
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But we have a contradiction when we run D on input (D):

accept if D rejects (D)

D((D)) = if D accepts (D)

reject
|

Note. The diagonalization method is use in here again. Set of TMs is countable, so we can list all

the TMs as My, Ms, M3, . ... Then we can construct a table as follows:

My Mz M;
(My) | bir b1z b3
(Ms) | bor Doz bos
(M3) | bs1 bs2 b33

Figure 4.4: Listing all the TMs and their behavior on their own encoding

where
1 if M; accepts (M;)
0 if M, rejects, or loops on (M)

Then we know H decides Aty as it is a decider, we have

My My M;
(My) | b1 b1z bi3
(Ma) | bar  baa  bos
(Ms) | bs1 bsa b33

Figure 4.5: Listing all the TMs and their behavior on their own encoding

where
A if M; accepts (M;)

R if M; rejects (M;)

Then we can construct a new TM D which output the opposite of the diagonal entries, then we get

a contradiction when we run D on input (D).

(M) (Ms) (D)
M| R
M, R
D .

Figure 4.6: Contradiction on the diagonal entries
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4.2.4 co-Turing-Recognizable

Definition 4.2.6 (co-Turing-recognizable). A language L is co-Turing-recognizable if its comple-

ment L is Turing-recognizable.

Theorem 4.2.4. A language L is decidable if and only if it is both Turing-recognizable and co-

Turing-recognizable.
Proof. We seperately prove the two directions.

= If L is decidable, then there is a TM M that decides L. We can use M to recognize L and L.
Hence, L is both Turing-recognizable and co-Turing-recognizable.

< Now A, A are both Turing-recognizable by TM M; and M, respectively. We can construct a
new TM M that decides L as follows:

1° On input w, run M; and M, in parallel on input w.

2° If M, accepts, then accept. If Ms accepts, then reject.

Since w € L or w ¢ L, either M; or My will eventually accept w. Thus, M halts on all inputs,
and decides L.

Proof complete. u
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As previously seen.
ATy is undecidable.

We want to prove that other languages are undecidable. We can do a technique called reducibility.

5.1 Reducibility

Definition 5.1.1 (reduction). Let A and B be languages. We say that A is mapping reducible to
B, written A <,,, B, if there exists a computable function f : ¥* — X* such that for every w € 3%,

weAs f(w) € B.
The function f is called a reduction from A to B. Which means the converting process from an

instance of problem A to an instance of problem B, and B can be used to solve A.

Theorem 5.1.1. If A <,, B
B is decidable = A is decidable.

and
A is undecidable = B is undecidable.

5.1.1 Ernm is Undecidable
Example. Consider the language

Ery = {(M)| M is a TM and L(M) = (}.

Assume Er) is decidable. We can get a decider R for Ety. From this, we can construct a decider S

for Amy as follows:
e On input (M, w), where M is a TM and w is a string:

1. Construct a new TM M as follows:

L(My) =0 & M does not accept w (1)
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2. Run R on input (My).
3. If R accepts, then reject. If R rejects, then accept.

This construction is valid because of (1). Thus, if we had a decider for Ery, we could construct a decider
for Ary. But we know that Aty is undecidable, so our assumption that Eryy is decidable must be false.

Therefore, Ery; is undecidable.

Note. M; takes input x and have
1. If x # w, then reject.
2. If x = w, run M on input w and accept if M accepts w.
Clearly,
L(My) =0 or {w}
We see that
M accepts w = L(M;) = {w} #0
L(My)#0 = M accepts w

Thus, condition (1) holds.

5.1.2 REGULAR~T\ is Undecidable

Example. Consider the language
REGULARMm = {(M) | M is a TM and L(M) is a regular language}.
As before, assume this language is decidable and has a decider R. We can construct a decider S for Aty
as follows:

e On input (M, w), where M is a TM and w is a string:

1. Construct a new TM M, recognize:

a regular language if M accepts w

a non-regular language if M rejects w

2. Run R on input (My).
3. If R accepts, then accept. If R rejects, then reject.

e Then we get S
S accepts  if M accepts w

S rejects  if M rejects w

which is a decider for Ary. Combining the R and Ms we can get a decider for Ary. Getting a
contradiction. Thus, REGULARTy is undecidable.

Note. M, recognizes the language

> if M accepts w

L(My) =
{0"1"™ | n > 0} if M rejects w

We know that ¥* is regular and {0™1™ | n > 0} is not regular. Thus, condition (1) holds.

The implementation of Ms on input x is as follows:
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1. If z is in the form 0™1", then accepts.

2. If x is not in the form 0™1", then simulate M on input w, and accept if M accepts w.

5.1.3 EQrMm is Undecidable

Example. Consider the language

EQTM = {<M1,M2> ‘ Ml,MQ o TM, L(Ml) = L(Mg)}

Assume EQry is decidable. We can get a decider R for EQry. From this, we can construct a decider

S for Emy as follows:
e On input (M), where M is a TM:
1. Running R on input (M, My), where My is a TM such that

L(My) = 0.

2. If R accepts, then accept. If R rejects, then reject.

This construction is valid because
L(M)=0< L(M) = L(Mjp).

Thus, if we had a decider for EQry, we could construct a decider for Ery. But we know that BTy is

undecidable, so our assumption that EQry; is decidable must be false. Therefore, FQr is undecidable

5.2 Computation Histories

Definition 5.2.1. M is a TM and w is an input string. An accepting computation history of M
on w is
C]_’CQ’...,Cl
where
e (] is the start configuration of M on input w,
e () is an accepting configuration, and

o for each i, C; legally yields C;41.

Note. A rejection computation history is defined similarly, except that Cj is a rejecting configura-

tion. If M loops on input w, then there is no computation history of M on w.

Remark. Deterministic TM has at most one (maybe reject or loop) computation history on input

w, while a nondeterministic TM may have many computation histories on input w.
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5.2.1 Linear Bounded Automata (LBA)

Definition 5.2.2 (LBA). A linear bounded automaton (LBA) is a TM with a tape of limited
length. Specifically, for an input string of length n, the tape head is not allowed to move beyond
the first n cells on the tape. If the head tries to move right at the end of input, the head stays

0110 tape

Figure 5.1: Linear Bounded Automaton (LBA)

Note. ADFA, ACFG7 Epra, Ecrg are all LBA-decidable.

Theorem 5.2.1. LBA has a finite number of configurations.

Proof. For an LBA M with
q : # states of M = |Q)|

g : # symbols of M = |T'|
Then M has at most
q-g"-n
distinct configurations on an input of length n. Which is because:
e ¢ ways to choose the current state,
e g™ ways to choose the content of the tape (only first n cells matter),
e n ways to choose the position of the tape head.

Thus, the total number of configurations is finite gng™. |

5.2.2 A;pa is Decidable
Example. Consider the language

Arpa = {{(M,w) | M : LBA that accepts w}.

We only have to concern about is there loop or not, because if it halts then it either accepts or rejects.
From the previous theorem, we know that an LBA has a finite number of configurations. Thus, if an

LBA M on input w ever repeats a configuration, then M will loop forever.

5.2.3 FEipa is Undecidable
Example. Consider the language
Erpa ={(M) | M : LBA, L(M) =0}.
The question of M accepts w can be solved by checking if L(B) = (), where B is an LBA constructed

from M and w. Thus, we assume Fppa is decidable and has a decider R. We can construct a decider S

for A1y as follows:

e On input (M, w), where M is a TM and w is a string:
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e B recognize all accepting computation histories of M on input w.

M accepts w = L(B) #

0
M rejects w = L(B) =10

e Run R on input (B).
o If R accepts, then reject. If R rejects, then accept.

The implementation of B on input z we check if it is an accepting computation history for M on w. To

be specifically, we check if x is
#C1#CoA - H#CO1# (1)
and C1 ... C) satisfies that
e (] is the start configuration of M on input w,
e (] is an accepting configuration, and

o for each i, C; legally yields Cj1.

CPU

<_

Ik
™

g3 |a|b|#|x|x|aq5|b|# ]| -

Figure 5.2: Machine B checking computation history

Note. To check the conditions in (1), B can scan through the input multiple times. Each time

checking one of the conditions.
1. For the first condition, B checks if C; matches gow.
2. For the last condition, B checks if Cj contains an gaccept-

3. To check the middle condition, B checks each pair C; and C; 1 to see if C; legally yields C;41.
This can be done by zigzags between C; and C;41. If this requires more space than the input
length, but it is fine since the extra space for comparision is no more than |#C ... #C#|

which is finite.

5.2.4 ALLcgg is Undecidable

As previously seen.

Ecrc = {(G) | G: CFG, L(G) =0} is decidable.

Example. Consider the language

ALLcpg = {(G) | G: CFG, L(G) = =*}.

It is impossible to check if G gernerates all strings. We assume ALLcrg is decidable. We have
G generates X < M does not accept w

which is equivalent to

G generates X* if M does not accept w

G fails some strings if M accepts w
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If we have a decider on G, then we can have a decider for Ary. Getting a contradiction. If M accepts

w, we let G fail to generate an accepting computation history of M on w. i.e. G generates all strings
1. Not starting with C4, or
2. Not ending with an accepting configuration, or
3. C; does not legally yield C; ;1 for some i.

To construct such a CFG G, we can construct a PDA to nondeterministically checks three branches for
the three requirements. The hardest one is the third branch, which can be done by pushing C; into the

stack and popping from the stack to compare with C;y;. To fix the order issue, we can push(pop) in

this order
— —
# . # . # o H < HH# #
Ci c? Cs CR G
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6.1 Big-O Notation

As previously seen. We have dicussed the concept of solvable

Decidable = Computationally Solvable

However, not all algorithms are created equal. Some algorithms are more efficient than others. To

analyze the efficiency of algorithms, we use Big-O Notation.

6.1.1 Analysis of Algorithms

¢ Worst Case: The maximum number of steps taken by an algorithm for any input of size n.

¢ Average Case: The expected number of steps taken by an algorithm for a random input of size n.

Usually, we focus on the worst-case analysis to ensure that our algorithm performs.

Definition 6.1.1. We use a function
f:N—= Rt
to represent the number of steps.
e n: length of input

e f(n): number of steps

Then we give the definition of Big-O notation.

Definition 6.1.2 (Big-O Notation). We say

if
Je > 0,719 € N such that Vn > ng, f(n) < c-g(n)
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Consider the following example.

Example. f(n) = 6n®+5

We have
6n3+5<Tndforn>2

That is, we can choose ¢ =7 and ng = 2. Thus,

Additionally, we can also say f(n) = O(n*) as

6n° +5 < 7n* forn > 2

Example. f(n) = 3nlog, n + 5nlog, logy n

We can prove that
f(n) = O(nlogn)

Note. Note that the base of the logarithm does not matter in Big-O notation since

log, n
log,n = Tog, @ = c-logy n = O(log,n)
From
n<2" VYn>1
we have

logon <n

From this, we can deduce that
log, log, n < logyn

Therefore,
f(n) <3nlogyn + 5nlog,n = 8nlogyn, Vn >1

Lemma 6.1.1.
Proof. Formally,

By definition,
Jer,n1, Yn>ng, f(n) <can

Jea, na, Yn > ng, g(n) < con?

Then,
f(n) +g(n) < cin+ can?® < (1 + c2)n?, Yn > max(ny, ng)

Thus, we choose ¢ = ¢ + ¢2 and ng = max(nq, no)
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Lemma 6.1.2 (Exponential Function).
f(n) =20

if 3 ¢, ng such that
fln) <297 Vn > ng

Lemma 6.1.3 (Constant Function).

if 3 ¢, ng such that
f(n) <c-1, Yn>mnyg

Thus,
f(n) < max{f(l), .. ,,f('ﬂo - 1)7C}7 vn
i.e.

f(n) is bounded by a constant for all n

6.1.2 small o Notation

Definition 6.1.3 (small o Notation). We say

if
lim —f(n) =0
n—oo g(n)
Note. Follow the definition of limit, if
g S =1

then for any € > 0, 39 such that
Yn > 0,|f(n) — L| <e

Then, for small o notation, we have

fn

Ve > 0,3ng such that Vn > ng, ——= < (<)c

g(n) —

~—

Remark. O versus o:

f(n) =0(g(n)) if 3¢ > 0,ng such that Vn > ng, f(n) < c-g(n)

Example. Consider
A={0*1* |k >0}

What is the # steps taken by a one-tape Turing machine to process a string?

We can separate the process into these steps:

1° We have to check if input is
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which takes O(n) steps.
2° Then, move back, which takes O(n) steps.
3° Next, we cross off one 0 and one 1, which takes O(n) steps.

4° We repeat steps 2 and 3 until all 0s and 1s are crossed off, which has n/2 iterations.

Thus, the total number of steps is

O(n) + g -0(n) + O(n) = O(n?)

Definition 6.1.4 (Time Complexity Class).

TIME(t(n)) = {L | a language decided by an O(¢(n)) TM}

Now we have
A ={0"1% | k > 0} € TIME(n?)

But we can do better: We first cross off every other 0 and then cross off every other 1. This way, we can
do

0000011111

The key is the length of the string left must be always even.

Algorithm 6.1: Decide Language A = {0¥1* | k > 0}
Input: String w

Output: Accept or Reject
if format is not 0*1* then

t return Reject;

N =

while tape contains any 0s or 1s do

if total count is Odd then

3
4 Scan tape to count total number of active Os and 1s;
5
6 t return Reject;

for each type x € {0,1} do
8 L Keep the 1st z, cross off the 2nd z, keep the 3rd z...

9 return Accept;

The whole process takes

1+ log,n
iterations, and each iteration takes O(n) steps. Thus, the total number of steps is
O(nlogn)

Thus, we have
A € TIME(nlogn)

We can’t do any better than this since
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Theorem 6.1.1. Any language decided in o(nlogn) time by a one-tape Turing machine is regular.

But we know that A is not regular.

Remark. If we want to use the method of copying, the problem is that the copy operation is
expensive. It takes O(n?) times to copy n symbols.

We can also do an O(n) algorithm using a two-tape Turing machine.
1° Check if input is
0...01...1

which takes O(n) steps.
2° Copy all Os to the 2nd tape, which takes O(n) steps.

3° Sequentially match each 1 on the 1st tape with a 0 on the 2nd tape, which takes O(n) steps. (if no
0 left, reject)

4° Tf all 1s are matched, accept; else, reject.

The total number of steps is

O(n) 4+ O(n) + O(n) = O(n)

But this requires a two-tape Turing machine.

6.2 Time Complexity

As previously seen. In Ch.3 we have dicussed the concept of various Turing machines, which are
all equivalent in Computability Theory.
However, in Complexity Theory, different Turing machines may have different time complexities for the

same language.

6.2.1 Multi-tape TM and Time Complexity

Theorem 6.2.1. Let t(n) > n. For a t(n) time multi-tape Turing machine, there exists an equivalent
O(t(n)?) time single-tape Turing machine.

Proof. Recall the simulation of multi-tape TM by single-tape TM.

CPU
O[1Ti[0-] tape 1
tape2 |OPU—)

Figure 6.1: Simulation of Multi-tape TM by Single-tape TM

To simulate each step of multi-tape TM, we scan to know where heads point to and do the update.
However, we have to right shift the tape. Si we need to know the tape length which is

kx O(t(n)) = O(t(n)) for constant k

A t(n) multi-tape TM generates at most O(t(n)) contens in O(t(n)) time. Thus, the cost of simu-
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lating each step of multi-tape TM is O(t(n)). Therefore, the total time is
O(t(n)) x O(t(n)) = O(t(n)*)

Definition 6.2.1. NTM Time Complexity ¢(n) is the maximum # steps the machine uses for any
path from root to leaf in the computation tree for any input of size n.

Theorem 6.2.2. Let t(n) > n. For a t(n) single-tape NTM, there exists an equivalent 2°(™) time
single-tape TM.

Proof. Assume b is the maximal number of branches at each node. Recall the way to simulate
NTM by multi-tape TM.

CPU —\L

O/1}1|1{0---|tapel

x|x|1|1(0--- |tape 2

L

11213]2|3---|tape 3

Figure 6.2: Simulation of NTM by Multi-tape TM

We use BFS to do the simulation in the computation tree. The total nodes in the computation tree,
which can be found in the tape 3 (record the path from root to node) is
t(n) '
14b+6 4+ 0 =) b = 0™
i=0

Cost of running from root to one node in tape 2 is O(¢(n)), and the cost of updating tape 3 is also
O(t(n)). Thus, the total cost of simulating each node is

# nodes x cost per node = O(b'™) x O(t(n)) = 2°0¢)

Note. that
pt(m) « t(n) = 9log, (b*™t(n)) _ 9t(n) log, b+log, t(n) _ 9O(t(n))

This is by the three-tape TM simulating the NTM. By the previous theorem, we can simulate the
three-tape TM by a single-tape TM in

(200(m))2 — 90(t(m)
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6.3 Languages in P

Definition 6.3.1 (Class P).
P = | JTIME(n*)
k

i.e. the class of languages decidable by a polynomial-time deterministic Turing machine.

Note. P class is roughly the class of solvable problems in computer.

6.3.1 PATH Problem

Example.
PATH = {(G, s,t) | G is a directed graph s.t. 3 path from s to ¢}

We can prove that
PATH e P

Intuition. Let’s start with a brute force way
1° m: |[V(G)]
2° |path| < m (since no loop)
3° #paths < m™
4° sequentially check if on has s to ¢

Total time:
O(m™ - m) = O(m™*?)

which is exponential time.

For an input (G, s,t), we can use the following algorithm including V(G), E(G)
1° Mark s
2° Repeat until no new node is marked:
o For each edge (u,v) € E(G), if u is marked, mark v
3° If t is marked, accept; else, reject.

# steps in the main loop is at most |V| (if no newly marked node, we stop). at each iteration, we have

to scan |E| < |V|?. The cost to mark node is polynomial. Thus, the total time is
O(IV]) x O(IE)) = O(IV[)

Therefore,
PATHe P

6.3.2 Relatively Prime Problem

Definition 6.3.2 (Relatively Prime). Let z,y € Z. We say = and y are relatively prime if their

greatest common divisor (ged) is 1, i.e.,

ged(z,y) =1
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Example.
RELPRIME = {(z,y) | z,y € N are relatively prime}

From the definition, we have to find a way to compute ged(z,y) efficiently. We can use the Euclidean
Algorithm.

Algorithm 6.2: Euclidean Algorithm
Input : (z,y)

Output: Greatest Common Divisor of x and y
while y # 0 do

Lxemmody;

N =

w

exchange x and y;

4 return z;

Note. If = < y, then in the first iteration, we have
rxmody==x

and then exchange = and y. Thus, after the first iteration, we have x > y.

At each iteration, x or y is reduced by at least half.

o Ifx >y
x mod y <

|8

— If < 2y, then
smody=z—y<z—>=>
Y Y 9 9

— If x > 2y, then
rzmody <y <

Therefore,
# iterations < 2max(log, z,log, y) = O(n)
where n is the length of the input (z,y are stored as bit string), log, z + log, y = O(n).

In each iteration, x mod y is polynomial time computable. Exhanging x and y is also polynomial time.
Thus, the total time is

O(n) x poly(n) = poly(n)

Theorem 6.3.1.
Context Free Language C P

Proof. Recall the CYK algorithm for CFLs in CNF. For an input string of length n, the total time
is

O(n?)
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6.4 Languages in NP

6.4.1 Hamiltonian Path Problem

For some problems, it is difficult to find an algorithm in P. Consider the following example.

Definition 6.4.1 (Hamiltonian Path). A Hamiltonian Path in a directed graph is a path that visits

all vertex exactly once.

Figure 6.3: Hamiltonian Path Example

Example.

HAMPATH = {(G, s,t) | G : a directed graph with a Hamiltonian path from s to ¢}

A brute-force way: checking all possible paths, but the number is exponential. So we can do a

polynomial-time verification instead.

for a path, in P time = a Hamiltonian path or not

6.4.2 Compositeness Problem
Definition 6.4.2 (Compositeness). We say = € N is composite if 3 p,q € N such that

r=p-q 1<pg<z

Given z, it is difficult to find such p,q efficiently. However, if we are given p,q, we can verify it in

polynomial time by multiplication.

However, there are still some problems that are difficult to verify in polynomial time, such as the Graph

Isomorphism Problem, or the complement of Hamiltonian path problem
HAMPATH = {(G, s,t) | G : a directed graph without a Hamiltonian path from s to ¢}

Verification is difficult since we have to check all possible paths.

6.4.3 Verifier

Definition 6.4.3 (Verifier). An algorithm V is called a verifier for a language L if

L = {w | Jc (certificate) such that V accepts (w,c)}

Example. Compositeness problem: V' accepts

(w,c) = (x,p), where p is a factor of =
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Example. HAMPATH problem: V accepts
(w,c) = ((G, s,t), path from s to t)

c is called a certificate or witness that helps to verify w € L.

Definition 6.4.4 (Polynomial-time Verifier). A verifier V is called a polynomial-time verifier if V'

runs in polynomial time with respect to |w|.

Remark. Note that the running time of V' is with respect to |w|, not |¢|. For a polynomial-time

verifier, we have

|c| € poly(|w])

otherwise, V reading c alone would take super-polynomial time.

6.4.4 Class NP

Definition 6.4.5 (Class NP).

NP = {L | L has a polynomial-time verifier}
Another equivalent definition of NP is as follows.
Definition 6.4.6 (NTIME class).

NTIME(t(n)) = {L | L is decidable by a O(t(n)) nondeterministic TM}

Theorem 6.4.1.
NP = | JNTIME(n")
k

For the NTM for language HAMPATH, we do
1° Nondeterministically get a path from s to ¢ in the list p1 -+ - pp,
2° For each list:

e Check for repetitions.
o Check if each edge (p;, pi+1) exists in G.
e Check if s =p; and t = p,,

Cost on each list is polynomial. The repetitions cost O(m?), checking edges cost O(m?), checking s and
t cost O(m). Thus, the total time is

O(m?) + O(m?) + O(m) = O(m?)

Therefore,
HAMPATH € NTIME(n?) = HAMPATH € NP
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6.4.5 NP = Polynomial-time NTM
Theorem 6.4.2.

U NTIME(n*) = {L | L decide by a polynomial-time NTM}
k

Proof. We start from the definition:

Idea. We consider both directions.
“=" NTM by guessing certificate.

“«" using NTM ’ s accepting branch as certificate.

“=" Recall the definition of NP.
L = {w | e (certificate) such that V accepts (w,c)}

We have
|| € poly(Jw|) = || < |w|*

because to handle (w,c) in |w|*, |c| should be bounded by polynomial of |w]|.

Then we use NTM to

1° Nondeterministically guess ¢ with length < |w|*.
2° Simulate V on input (w, c).

That is, we run all ¢ in parallel and each is polynomial time. We have that for any w € L, the

NTM accepts in polynomial time. Thus,
L € NTIME(n¥)

“<” Assume
L € NTIME(n*)

i.e. w is accepted by a polynomial NTM. We let ¢ be any accepting branch where each branch

is polynomial time. Then we run the verifier V' that handles (w, ¢) in polynomial time. Thus,

L has a polynomial-time verifier

Proof complete. u

6.4.6 SUBSET-SUM Problem
Example.

SUBSET-SUM = {(S, £)

38’ C S such that th}

zeS’
Note that we allow repetition of elements in S. We will prove that
SUBSET-SUM € NP
Consider any input ((S,t), c). We
1° Check if > ¢; =t
2° Check if ¢; € S
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3° If both hold, accept; else, reject.
The cost of summation is O(]S|), and checking ¢; € S also takes O(]S|). Thus, the total time is

o(ls]) +o(S]) = o(|S])
Therefore,
SUBSET-SUM € NP
6.4.7 P versus NP and NP-completeness

Roughly
e P: problems that can be solved in polynomial time.
e NP: problems that can be verified in polynomial time.

The greatest open question in computer science is whether
P=NP?
It has shown that

. However, it is not known whether
P=NP or P #NP

For certain problems in NP, if we can find a polynomial time algorithm to solve one of them,

P=NP

These problems are called NP-complete problems. We will discuss NP-completeness in the next lec-

ture.
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