
Introduction to Computation Theory

Vinsong

December 9, 2025

Abstract

The lecture note of 2025 Fall Introduction to Computation Theory by professor 林智仁.

Contents

0 Basic Knowledge 2
0.1 Mathematical Notions . 2
0.2 Definitions, Theorems, and Proofs . 4

1 Regular Languages 5
1.1 Deterministic Finite Automata (DFA) . 5
1.2 Nondeterministic Finite Automata (NFA) . 7
1.3 Regular expressions . 12
1.4 Pumping lemma . 16

2 Context-Free Languages 19
2.1 Context-Free Grammars (CFG) . 19
2.2 Chomsky Normal Form . 24
2.3 Pushdown Automata . 26
2.4 Deterministic Pushdown Automata . 35

3 The Church-Turing Thesis 37
3.1 Turing Machines . 37
3.2 Multi-tape Turing machines . 43
3.3 Nondeterministic Turing Machines . 45
3.4 Hilbert’s problems . 47

4 Decidability 49
4.1 Decidability . 49
4.2 Halting Problem . 53

5 Reducibility 58
5.1 Reducibility . 58
5.2 Computation Histories . 60

6 Complexity Theory 64
6.1 Big-O Notation . 64
6.2 Time Complexity . 68
6.3 Languages in P . 70
6.4 Languages in NP . 72

1

Chapter 0

Basic Knowledge

Lecture 1
2025-09-010.1 Mathematical Notions

0.1.1 Set & its operation

Definition 0.1.1 (Set). Omitted

Definition (Sequence & Tuple). Here are some definitions of basic containers

Definition 0.1.2 (Sequence). Sequence is the objects in order, which have two properties:

• Order:
(1, 2, 3) ̸= (2, 1, 3)

• Repetition:
Sequence : (1, 2, 3) ̸= (1, 1, 2, 3)

Set : {1, 2, 3} = {1, 1, 2, 3}

Definition 0.1.3 (Tuple). Finite sequence, (1, 2, 3) is a 3-tuple

Definition 0.1.4 (Cartesian Product). Here is the Cartesian Product between two sets. We define

A = {1, 2}, B = {x, y}

then,
A×B = {(1, x), (1, y), (2, x), (2, y)}

2

Lecture 1

0.1.2 Function & Relation

Definition 0.1.5 (Function). Function is a machine with single output.

Definition (Equivalence Relations). Here are the properties of Equivalence Relations.

Definition 0.1.6 (reflexive).
∀x, xRx

Definition 0.1.7 (symmetric).
∀x, y, xRy ⇐⇒ yRx

Definition 0.1.8 (transitive).
xRy, yRz =⇒ xRz

Example.
i ≡7 j, if 0 = i− j mod 7

• Reflexive
i− i = 0 mod 7

• Symmetric
i− j = 7a, j − i = −7a

• Transitive
i− j = 7a, j − k = 7b =⇒ i− k = 7(a+ b)

0.1.3 String & Languages

Definition (String & Languages). Here is the definition of Language.

Example (Alphabet).
{0, 1}

Example (String).
01000

Definition 0.1.9 (Language). Set of Strings

L(A)

is the language of A

CHAPTER 0. BASIC KNOWLEDGE 3

Lecture 1

0.2 Definitions, Theorems, and Proofs
• Definition: Introduce new concept.

• Statement: A sentence that is either true or flase.

• Theorem: A statement that is true.

– Lemma: A “helping” theorem.

– Corllary: A theorem that follows easily from another theorem.

0.2.1 Proof by Construction

Proposition 0.2.1. Sum of degrees of every graph is even

Proof. Each edge contributes 2 nodes, so∑
v∈V

deg(v) = 2× |E|

Hence, the sum of degrees of every graph is even. ■

Note. The implication is the definition of graphs.

0.2.2 Proof by Contradiction

Assume the statement is false, then deduce a contradiction.

0.2.3 Proof by Induction

• Basis: Prove for n = 0 or n = 1 or some trivial case.

• Inductive Step: Assume true for n = k (Induction Hypothesis), prove for n = k + 1.

CHAPTER 0. BASIC KNOWLEDGE 4

Chapter 1

Regular Languages

1.1 Deterministic Finite Automata (DFA)
• Automaton: single

• Automata: plural

Definition 1.1.1 (Deterministic Finite Automata (DFA)). We define a DFA as a 5-tuple

(Q, Σ, δ, q0, F)

where

• Q: Set of states (Finite)

• Σ: Alphabet (i.e. set of input characters) (Finite)

• δ: Q× Σ→ Q: Transition Function

• q0 ∈ Q: Start state

• F ⊂ Q: Set of accept states

q1start q2 q3

0

1

1
0

0, 1

Figure 1.1: A state diagram

If we call this machine M , then we have.

M = (Q,Σ, δ, q0, F)

5

Lecture 1

For the example given above,

Q = {q1, q2, q3}

Σ = {0, 1}

q0 = q1

F = {q2}

The δ function:

0 1
q1 q1 q2

q2 q3 q2

q3 q2 q2

Definition 1.1.2. The language that recognize by a Machine M is denoted as

L(M) = A

We say A is recognizeed (accepted) by M .

1.1.1 Definition of Computation

Let,

• M = (Q, Σ, δ, q0, F) be a finite automaton.

• w = w1, · · · , wn be a string over Σ.

Theorem 1.1.1. M accepts w if ∃ states r0 · · · rn such that

(1) r0 = q0

(2) ri+1 = δ(ri, wi+1), i = [0, n− 1]

(3) rn ∈ F

Definition 1.1.3 (Regular Language). A language is regular if recognized by some automata.

1.1.2 Regular Operations

Definition. Assume A,B are given languages,

Definition 1.1.4 (Union).
A ∪B = {w | w ∈ A ∨ w ∈ B}

Definition 1.1.5 (Concatenation).

A ◦B = {w1w2 | w1 ∈ A,w2 ∈ B}

CHAPTER 1. REGULAR LANGUAGES 6

Lecture 2

Definition 1.1.6 (Kleene Star).

A∗ = {w1 · · ·wk | k ≥ 0, wi ∈ A}

which can also be defined as
∞⋃
i=1

Ai = {ε} ∪A ∪A2 ∪A3 ∪ · · · , A0 = {ε}, An = {wv | w ∈ An−1, v ∈ A}

Definition 1.1.7 (closed). We say an operation R is closed if the following property holds if

x ∈ A, y ∈ A, then xRy ∈ A

Theorem 1.1.2. Regular languages are closed under the union, concatenation, and Kleene star.

Proof. We define two machines as follows

M1 = (Q1,Σ, δ1, q1, F1)

M2 = (Q2,Σ, δ2, q2, F2)

if we union them, we can define a new machine

M1 ∪M2 =



M = (Q,Σ, δ, q0, F)

Q = {(r1, r2) | r1 ∈ Q1, r2 ∈ Q2}

δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

q0 = (q1, q2)

F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2}

Hence, regular languages are closed under union. ■

Lecture 2
2025-09-081.2 Nondeterministic Finite Automata (NFA)

First, we see a NFA that accept strings with 1 in 3rd position from the end,

q1start q2 q3 q4

0, 1

1 0, ε 1

0, 1

Figure 1.2: NFA machine

• δ is not a function, i.e. δ(q1, 1) = q1 or q2

• ε between q2, q3 means q2 can move to q3 without any input

CHAPTER 1. REGULAR LANGUAGES 7

Lecture 2

We can transport NFA to DFA by some method, for example, for the above NFA we can have:

q000start q100 q010 q110

q001 q101 q011 q111

0

1

0

1
1

0

0

1

1

0

0

1 1

0

1

0

Figure 1.3: NFA machine transport to DFA

We can record it in three bits, it will be complicated.

Definition 1.2.1 (power set).
P (Q) = {X|X ∈ Q}

which contain all the 2|Q| combinations.

Definition 1.2.2 (Nondeterministic Finite Automata (NFA)). We define a NFA as a 5-tuple

M = (Q,Σε, δ, q0, F)

where

• Q: Set of states (Finite)

• Σε = Σ ∪ {ε}

• δ: Q× Σε → P (Q)

• q0 ∈ Q

• F ⊂ Q

Theorem 1.2.1. We have w

w = y1 · · · ym where yi ∈ Σε

A sequence r0 · · · rm such that

(1) r0 = q0

(2) ri+1 = δ(ri, yi+1), i = [0, n− 1]

(3) rn ∈ F

Note. So m may not be the original length (as yi may be ε)

CHAPTER 1. REGULAR LANGUAGES 8

Lecture 2

1.2.1 Equivalence of DFA and NFA

From DFA ⇒ NFA. Formally DFA is not an NFA due to Σ and Σε. but we can easily handle this by
adding

qi, ε→ ∅

For NFA ⇒ DFA, we have the example on the slides on a graph.

q1start

q2 q3

b

a

ε

a, b

a

Figure 1.4: NFA example

⇓

{1, 3}start

{2}

{3} ∅

{2, 3} {1, 2, 3}

a, b

a

b

ba

a

b

a

b

a

b

Figure 1.5: DFA convertion example

• Remove the states that are not reachable.

• Remove the states that not handle the ε transition. For example, the start state

{q1} wrong → {q1, q3} correct

Definition 1.2.3.
E({q0}) = {q0} ∪ {states reached by ε from q0}

Then we can redefine the procedure formally.

CHAPTER 1. REGULAR LANGUAGES 9

Lecture 2

Theorem 1.2.2. Given a NFA
M = (Q,Σ, δ, q0, F)

We can convert it to a DFA
M ′ = (Q′,Σ, δ′, q′0, F

′)

where

• Q′ = P (Q)

• q′0 ∈ P (Q) = E({q0})

• F ′ = {R | R ∈ Q′, R ∩ F ≠ ∅}

• δ′:
δ′(R, a) =

⋃
r∈R

E(δ(r, a))

1.2.2 Closure under reqular operations

We give two NFAs N1, N2,

N1 = (Q1,Σ, δ1, q1, F1)

N2 = (Q2,Σ, δ2, q2, F2)

note that ε /∈ Σ, and the graph of them are:

N1 N2

q1start q2start

Figure 1.6: N1, N2

• Union: We can contrruct the N1 ∪N2 in

q0start

q1

q2

ε

ε

Figure 1.7: N1 ∪N2

Proposition 1.2.1 (Construction of Union). New NFA is

N1 ∪N2 = (Q, Σ, δ, q0, F)

where

CHAPTER 1. REGULAR LANGUAGES 10

Lecture 2

◦ Q = Q1 ∪Q2 ∪ {q0}

◦ δ :

δ(q, a) =


δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

{q1, q2} q = q0, a = ε

∅ q = q0, a ̸= ε

◦ F = F1 ∪ F2

• Concatenation: We can construct the N1 ◦N2 in

start

ε

ε

Figure 1.8: N1 ◦N2

Proposition 1.2.2 (Construction of Concatenation). New NFA is

N1 ◦N2 = (Q, Σ, δ, q0, F)

where

◦ Q = Q1 ∪Q2

◦ δ :

δ(q, a) =


δ1(q, a) q ∈ Q1 F1

δ2(q, a) q ∈ Q2

δ1(q, ε) ∪ {q2} q ∈ F1, a = ε

δ1(q, ε) q ∈ F1, a ̸= ε

◦ q0 = q1

◦ F = F2

• Kleene star: N∗
1 can also accept {∅}, then we can construct the N∗

1 in

start

ε

ε

ε

Figure 1.9: N∗
1

Proposition 1.2.3 (Construction of Kleene Star). New NFA is

N∗
1 = (Q1, Σ, δ1, q0, F1)

where

◦ Q = Q1 ∪ {q0}

CHAPTER 1. REGULAR LANGUAGES 11

Lecture 3

◦ δ :

δ(q, a) =



δ1(q, a) q ∈ Q1 F1

δ1(q, a) ∪ {q1} q ∈ F1, a = ε

δ1(q, ε) q ∈ F1, a ̸= ε

{q1} q = q0, a = ε

∅ q = q0, a ̸= ε

◦ F = F1 ∪ {q0}

Note. Some operations are also closed under regular languages,

◦ Intersection:
A1 ∩A2

Use the product automaton (the same construction as for Union). A string is accepted if and
only if the state is in the accept states of both N1 and N2 at the same time.

◦ Set Difference:
A1 −A2

Use the product automaton as well. A string is accepted if the state is in the accept states of
N1 but not in the accept states of N2.

◦ Complement:
Ac

1 = Σ∗ −A1

Since Σ∗ is regular and the class of regular languages is closed under set difference, Ac
1 is also

regular.

Lecture 3
2025-09-151.3 Regular expressions

A regualar expression is a tool to describe a language.

Definition 1.3.1 (Regular expressions). R is a regular expressions if it is one of the following expres-
sions:

(1) a, where a ∈ Σ

(2) ε (ε /∈ Σ)

(3) ∅

(4) R1 ∪R2, where R1, R2 are regular expressions

(5) R1 ◦R2, where R1, R2 are regular expressions

(6) R∗
1, where R1 is a regular expression

If their is no parentheses, we follow the order of:

Kleene star → Concatenation → Union

CHAPTER 1. REGULAR LANGUAGES 12

Lecture 3

Remark.
R+ = RR∗, R+ ∪ {ε} = R∗

For ∅ and ε, we have

• ε: empty string

• ∅: empty language (language without any string)

(0 ∪ ε)1∗ = 01∗ ∪ 1∗

(0 ∪ ∅)1∗ = 01∗

∅1∗ = 1∗∅ = ∅

Example. Here are some examples,

• Strings that start and end with the same symbol:

0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1

• (ΣΣ)∗: strings with even length

• R ∪ ∅ = R

• R ◦ ε = R

• ∅∗ = {ε}

Floating point numbers can also be represented by regular expressions. For example,

(+ ∪ − ∪ ε)(DD∗ ∪DD∗.D∗ ∪D∗.DD∗), where D = {0, . . . , 9}

Example.

72 ∈ DD∗

2.1 ∈ DD∗.D∗

7. ∈ DD∗.D∗

.01 ∈ D∗.DD∗

Lemma 1.3.1. Language by a regular expression =⇒ Regular (described by an automaton)

Proof. The proof is by induction,

• R = a ∈ Σ can be recognize by

start a

N = ({q1, q2},Σ, δ, q1, {q2})

δ(q1, a) = {q2}

δ(r, b) = ∅, r ̸= q1 or b ̸= a

CHAPTER 1. REGULAR LANGUAGES 13

Lecture 3

• R = ε

start

N = ({q1},Σ, δ, q1, {q1})

δ(q1, a) = ∅, ∀a

• R = ∅

start

N = ({q},Σ, δ, q, ∅)

δ(r, a) = ∅, ∀r, a

• R = R1 ∪R2, R = R1 ◦R2, R = R∗
1 have proof by NFA.

■

1.3.1 Convert a DFA to a regular expression

The idea is:

1◦ DFA −→ GNFA

2◦ Remove states from GNFA until only the start and accept states.

Question. Convert the following DFA into regular expression.

1start 2

3

a

a

b

b

b

a

Answer. First, convert to GNFA:

sstart

1 2

3 a

a

a

b

b

b

a
ε ε

ε

CHAPTER 1. REGULAR LANGUAGES 14

Lecture 4

Next, is to remove the states one by one. We skip, so we can get the answer:

(a(aa ∪ b)∗ab ∪ b)((ba ∪ a)(aa ∪ b)∗ab ∪ bb)∗((ba ∪ a)(aa ∪ b)∗ ∪ ε) ∪ a(aa ∪ b)∗

which is very complicated. ⊛

Definition 1.3.2 (Generalized NFA(GNFA)). We define a GNFA as a 5-tuple

G = (Q,Σ, δ, qstart, qaccept)

where

• F is not a se, but a single accept state qaccept

• δ function is:
(Q− {qaccept})× (Q− {qstart})→ R

where R is all regular expressions over Σ.

• Two new states:

qstart → q0 with ε

any q ∈ F → qaccept with ε

Consider qrip is the state being removed

qi qj

qrip

R1

R4

R3

R2

The new regular expression between qi and qj is

qi qj
(R1)(R2)

∗(R3) ∪ (R4)

We can wrote the whole process into a algorithm.

CHAPTER 1. REGULAR LANGUAGES 15

Lecture 4

Algorithm 1.1: convert(G) —State-Elimination from GNFA to RE
Input: G = (Q,Σ, δ, qs, qa) a GNFA
Output: A regular expression R for the language of G

1 k ← |Q|;
2 ; // number of states
3 if k = 2 then
4 return δ(qs, qa) ; // the (single) edge label from qs to qa

5 Choose any qrip ∈ Q \ {qs, qa};
6 Q′ ← Q \ {qrip};
7 Initialize δ′ as the restriction of δ to Q′ ×Q′;

8 foreach qi ∈ Q′ \ {qa} do
9 foreach qj ∈ Q′ \ {qs} do

10 R1 ← δ(qi, qrip);
11 R2 ← δ(qrip, qrip);
12 R3 ← δ(qrip, qj);
13 R4 ← δ(qi, qj);
14 δ′(qi, qj)← R4 ∪

(
R1 R

∗
2 R3

)
;

15 G′ ← (Q′,Σ, δ′, qs, qa);
16 return convert(G′);

Lecture 4
2025-09-221.4 Pumping lemma

1.4.1 Non regular language

Some languages cannot be recognized by DFA such as,

{0n1n | n ≥ 0}

We might remember #0 first, but # of possible n’s is ∞, so we have some method to prove that the
language is non-regular.

Theorem 1.4.1 (pumping lemma). If A is regular, ∃p such that ∀s ∈ A, |s| ≥ p,

∃x, y, z, such that s = xyz and

1◦ ∀i ≥ 0, xyiz ∈ A

2◦ |y| > 0

3◦ |xy| ≤ p

Proof. Skip, which is on the slides. ■

CHAPTER 1. REGULAR LANGUAGES 16

Lecture 4

1.4.2 Example for Pumping Lemma

Question. Show that the language L = {0n1n | n ≥ 0} is not regular using the pumping lemma.

Answer. Now consider the string
s = 0p1p

We know that |s| ≥ p. By the lemma, s can be split into xyz such that

xyiz ∈ B, ∀i ≥ 0, |y| > 0, and |xy| ≤ p

1◦ If y = 0 · · · 0, then
xy = 0 · · · 0 and z = 0 · · · 0 1 · · · 1.

Thus,
xy2z : #0 > #1.

Hence xy2z /∈ B, a contradiction.

2◦ If y = 1 · · · 1, then similarly
xy2z /∈ B as #0 < #1.

3◦ If y = 0 · · · 0 1 · · · 1, then

xy2z /∈ B since it is not of the form 0∗1∗.

Note. Just pick one is sufficient to show the answer.

⊛

Question. Show that the language C = {w | #0 = #1} is not regular using the pumping lemma.

Answer. We can use the situation in the pevious example, consider

s = 0p1p

We can’t proof the third condition due to C = {w | #0 = #1} which just require the #0 = #1.
Then we can use the third condition

|xy| ≤ p

which means y are strict into the first 0p we can only consider the first case.

|xy| ≤ p⇒ y = 0 · · · 0 in s = 0p1p

Then,
xy2z /∈ C

⊛

Lemma 1.4.1. When using pumping lemma, we usually use contradiction, so we use

∀p ∃s ∈ A, |s| ≥ p,
[
∀x, y, z

(
(s = xyz ∧ |y| > 0 ∧ |xy| ≤ p) → ∃i ≥ 0, xyiz /∈ A

)]
.

Use the claim and the first, second condition to get the negation of the third condition.

CHAPTER 1. REGULAR LANGUAGES 17

Lecture 4

Question. D = {1n2 | n ≥ 0} is not regular

Answer. We pick
s = 1p

2

∈ D

Then, if s = xyz, |xy| ≤ p, |y| > 0, we can get

p2 < |xy2z| ≤ p2 + p ≤ (p+ 1)2

hence, xy2z /∈ D. ⊛

CHAPTER 1. REGULAR LANGUAGES 18

Chapter 2

Context-Free Languages

Lecture 5
2025-10-202.1 Context-Free Grammars (CFG)

Which is more powerful, and can be used in compilers. A Grammar is a collection of substitution rules
that describe the structure of a language.

Example. Consider a grammar G1:

A→ 0A1

A→ B

B → #

Here are the jargon terms:

• Each of one is called a substitution rule.

• Variables (non-terminals): A,B (Capital letters)

• Terminals: 0, 1,# (Lowercase letters, numbers, symbols)

• Start variable: A (the variable we start with)

The process of generating strings is called derivation. G1 generates 000#111 by

A⇒ 0A1⇒ 00A11⇒ 000A111⇒ 000B111⇒ 000#111

We can show the derivation using a parse tree:

A

0

A

0

A

0

A

B

1 1 1

19

Lecture 5

2.1.1 Definition of CFG

The language of grammar G is denoted by L(G), for the language we discuss here,

L(G1) = {0n#1n | n ≥ 0}

Now we give the formal definition of CFG.

Definition 2.1.1 (Context-Free Grammar). We defined a CFG as a 4-tuple

G = (V,Σ, R, S)

where

• V : Variables (Finite)

• Σ: Terminals (Finite)

• R: Rules:
Variables→ Strings of Variables and Terminals (including ε)

• S ∈ V : Start variable

For instance, for G1,
G1 = ({A,B}, {0, 1,#}, R,A)

where R is:
A→ 0A1 | B, B → #

Notation. If u, v, w are strings and rule A→ w is applied, then we say

uAv yields uwv

denoted as
uAv ⇒ uwv

Notation. If
u = v or u⇒ u1 ⇒ · · · ⇒ uk ⇒ v

then we write
v

∗
=⇒ u

Definition 2.1.2 (Language of a CFG). The language generated by a CFG G with start variable S is

L(G) = {w ∈ Σ∗ | S ∗
=⇒ w}

CHAPTER 2. CONTEXT-FREE LANGUAGES 20

Lecture 5

2.1.2 Examples of CFGs

Question. Consider the grammar G2 = ({S}, {a, b}, R, S):

S → aSb | SS | ε

What is L(G2)?

Answer. If we let a, b be the left and right parentheses respectively, then L(G2) is the set of all
balanced parentheses. ⊛

Example. Consider the grammar G3 = (V,Σ, R, S) where

• V = {⟨expr⟩, ⟨term⟩, ⟨factor⟩}

• Σ = {+,×, (,), a}

• R:

⟨expr⟩ → ⟨term⟩+ ⟨expr⟩ | ⟨term⟩

⟨term⟩ → ⟨factor⟩ × ⟨term⟩ | ⟨factor⟩

⟨factor⟩ → (⟨expr⟩) | a

Consider the string a+ a× a:

E

E

T

F

a +

T

T

F

a ×

F

a

Figure 2.1: Parse tree of a+ a× a

Consider the string (a+ a)× a:

E

T

T F

F

E

E T

T F

F

a(+ a) × a

Figure 2.2: Parse tree of (a+ a)× a

CHAPTER 2. CONTEXT-FREE LANGUAGES 21

Lecture 5

Note. The example above shows that CFGs can express operator precedence and associativity.

2.1.3 Design of CFGs

We can design CFGs in many methods. Here are some common patterns:

• Combining smaller parts:

Example. L(G) = {anbn | n ≥ 0} ∪ {bnan | n ≥ 0}

We can let the rule R be:

S1 → aS1b | ε

S2 → bS2a | ε

S → S1 | S2

• From DFA:

Lemma 2.1.1. For any regular language A, there exists a CFG G such that L(G) = A. The
rules of CFG can be

Ri → aRj for each transition δ(qi, a) = qj

Ri → ε if qi ∈ F

The difference is that CFG allows the format

Ri → aRjb

But DFA only allows
Ri → aRj

where we treat Ri as the state and let δ(Ri, a) = Rj .

2.1.4 Parse Trees and Ambiguity

If we let the rules of G3 be

⟨expr⟩ → ⟨expr⟩+ ⟨expr⟩ | ⟨expr⟩ × ⟨expr⟩ | (⟨expr⟩) | a

We can see the following two parse trees for a+ a× a:

E

E

E

a +

E

a ×

E

a

E

E

a +

E

E

a ×

E

a

Figure 2.3: Two different parse trees for a+ a× a under ambiguous grammar

This is called ambiguity. A CFG is ambiguous if there exists some string with two or more different
parse trees. The above G3 is unambiguous, G′

3 with new rules is ambiguous.

CHAPTER 2. CONTEXT-FREE LANGUAGES 22

Lecture 5

However, an unambiguous grammar may also generate same parse tree but different derivations. Consider
G3:

• We can do derivation

⟨expr⟩ ⇒ ⟨expr⟩+ ⟨term⟩

⇒ ⟨expr⟩+ ⟨term⟩ × ⟨factor⟩

• We can also do derivation

⟨expr⟩ ⇒ ⟨expr⟩+ ⟨term⟩

⇒ ⟨term⟩+ ⟨term⟩

which is not considered ambiguous. So we have the following definition:

Definition 2.1.3 (leftmost derivation). A leftmost derivation is a derivation where at each step,
the leftmost variable is replaced.

Then we can have the formal definition of ambiguity:

Definition 2.1.4 (Ambiguous). A is ambiguous if w ∈ A and there exists two or more different
leftmost derivations for w.

Definition 2.1.5 (Inherent Ambiguity). A language is inherently ambiguous if it only has ambigu-
ous grammars.

Example. Consider the language

L = {aibjck | i = j or j = k}

We can consider the string a2b2c2. It can be generated by two different leftmost derivations. First we
consider

S ⇒ S1 | S2

• Using i = j:

S1 → AC

A→ aAb | ε

C → cC | ε

the derivation is

S1 ⇒ AC ⇒ aAbC ⇒ aaAbbC ⇒ aabbC ⇒ aabbcC ⇒ aabbcc

• Using j = k:

S2 → A′C ′

A′ → aA′ | ε

C ′ → bC ′ c | ε

the derivation is
S2 ⇒ A′C ′ ⇒ aA′C ′ ⇒ aaA′bC ′c⇒ aabbC ′cc⇒ aabbcc

CHAPTER 2. CONTEXT-FREE LANGUAGES 23

Lecture 6

Lecture 6
2025-10-272.2 Chomsky Normal Form

We want to simplify the structure of context-free grammars. One useful normal form is the Chomsky
Normal Form (CNF).

Definition 2.2.1 (Chomsky Normal Form). A context-free grammar is in Chomsky Normal Form
if all its production rules are of the form:

• A→ BC, where A,B,C are non-terminal symbols and B,C are not the start symbol.

• A→ a, where a ∈ Σ (ε /∈ Σ)

• S → ε is allowed, where S is the start symbol.

Example. Convert the following CFG to CNF:

S → ASA | aB

A→ B | S

B → b | ε

First, we add S0 as the new start symbol:

S0 → S S → ASA | aB A→ B | S B → b | ε

Next, we remove the ε-productions B → ε:

S0 → S S → ASA | aB | a A→ B | ε | S B → b

Next, we remove the ε-productions A→ ε:

S0 → S S → ASA | aB | a | AS | SA | S A→ B | S B → b

Next, we remove single production S → S:

S0 → S S → ASA | aB | a | AS | SA A→ B | S B → b

Next, we remove single production S0 → S:

S0 → ASA | aB | a | AS | SA S → ASA | aB | a | AS | SA A→ B | S B → b

Next, we remove single production A→ B, A→ S:

S0 → ASA | aB | a | AS | SA S → ASA | aB | a | AS | SA A→ b | ASA | aB | a | AS | SA B → b

Finally, we convert to CNF by introducing new variables for terminals and breaking down long produc-
tions:

S0 → AA1 | UB | a | AS | SA

S → AA1 | UB | a | AS | SA

A→ b | AA1 | UB | a | AS | SA

A1 → SA

B → b

U → a

CHAPTER 2. CONTEXT-FREE LANGUAGES 24

Lecture 6

2.2.1 Procedure of Converting CFG to CNF

To convert any CFG to CNF, we can follow these steps:

1◦ Add a new start symbol S0 with the production

S0 → S

2◦ Remove all ε-productions, except for the start symbol, i.e. A→ ε (A ̸= S0), for any

· · · → uAv

add the production
· · · → uv

3◦ Remove single productions of A→ B where A,B ∈ V /{S}.

A→ B, B → γ ⇒ A→ γ

Remark. A→ γ can’t be a unit rule previously removed.

4◦ Convert remaining productions to CNF:

A→ u1u2 · · ·uk ui ∈ V ∪ Σ

and
if k = 1, then ui ∈ Σ

Convert as follows:

A→ u1A1

A1 → u2A2

...

Replaced every terminal ui ∈ Σ with a new variable Ui:

Ui → ui ui ∈ Σ

2.2.2 Infinite Loop in Converting

Example. Consider the grammar:

S → B | ε

B → S | ε

We first add a new start symbol:

S0 → S S → B | ε B → S | ε

Next, we remove the ε-productions:

S0 → S | ε S → B B → S | ε

Next, we remove the ε-productions again:

S0 → S | ε S → B | ε B → S

This process will continue indefinitely. The reason is S → ε has been handled. So there is no need to
add S → ε.

CHAPTER 2. CONTEXT-FREE LANGUAGES 25

Lecture 6

2.3 Pushdown Automata
We now introduce the machine that recognizes context-free languages (CFL), called Pushdown Automata
(PDA). PDA is a machine with a stack, which is a way to store previous states.

CPU
0 1 1 0 · · · input

Figure 2.4: DFA or NFA

CPU
0 1 1 0 · · · input
1 1 1 0 · · · stack

Figure 2.5: Pushdown Automata (PDA)

Example. Consider the language A = {0n1n | n ≥ 0}. We can design a PDA to recognize A:

q1start q2

q3q4

ε, ε→ $
0, ε→ 0

1, 0→ ε

1, 0→ ε
ε, $→ ε

Figure 2.6: PDA for A = {0n1n | n ≥ 0}

$ is a special bottom stack symbol to indicate the initial state of the stack. The PDA works as follows:

• q2 → q2, put 0 into stack

• q2 → q3 and q3 → q3, read 1 and pop 0 up

If the input is 0011 which is same as ε0011ε, the process is as follows:

q1, ∅, ε

q2, {$}, 0

q2, {0, $}, 0

q2, {0, 0, $}, 1

q3, {0, $}, 1

q3, {$}, ε

q4, {}

Notation. {}: contents of the stack before processing the input character.

CHAPTER 2. CONTEXT-FREE LANGUAGES 26

Lecture 6

2.3.1 Formal definition of PDA

Definition 2.3.1 (Pushdown Automata). A pushdown automaton (PDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F)

, where

• Q: States

• Σ: Input alphabet

• Γ: Stack alphabet

• δ: Transition function
Q× Σε × Γε → P(Q× Γε)

• q0 ∈ Q: Start state

• F ⊂ Q: Set of accepting states

The definition of the above PDA for A = {0n1n | n ≥ 0} is as follows:

• Q = {q1, q2, q3, q4}

• Σ = {0, 1}

• Γ = {0, $}

• q0 = q1

• F = {q1, q4}

For the the transition function, we care about three things:

• Current state

• Current input

• Top of the stack

The transition function δ works as follows:

0 1 ε

0 $ ε 0 $ ε 0 $ ε

q1 {(q2, $)}
q2 {(q2, 0)} {(q3, ε)}
q3 {(q3, ε)} {(q4, ε)}
q4

For example, we say the transition of q2 → q3 to be

δ(q2, 1, 0) = {(q3, ε)}

CHAPTER 2. CONTEXT-FREE LANGUAGES 27

Lecture 6

2.3.2 Nondeterministic situation

Example. Design a PDA for the language B = {aibjck | i, j, k ≥ 0 and i = j or j = k}.

q1start q2

q3 q4

q5 q6 q7

ε, ε→ $

a, ε→ a
ε, ε→ ε

ε, ε→ ε

b, a→ ε

ε, $→ ε

c, ε→ ε

b, ε→ ε

ε, ε→ ε

c, a→ ε

ε, $→ ε

Figure 2.7: Nondeterministic PDA

We input a2bc2, to illustrate the process, we can build the following computation tree:

q1∅ q2{$} q3{$} q4∅ q5{$} q6{$} q7∅

q2{a, $}

q2{a, a, $} q3{a, a, $}

q3{a, $}

q5{a, a, $}

q5{a, a, $} q6{a, a, $}

q6{a, $}

q6{$} q7∅

q6{a, a, $}

q3{a, $} q5{a, $} q6{a, $}
a

a

b

c

c

Example. Design a PDA for the language C = {wwR | w ∈ {0, 1}∗}.

Idea. Symbols pushed to stack, nondeterministically guess middle is reached

q1start q2

q3q4

ε, ε→ $ 0, ε→ 0

1, ε→ 1

ε, ε→ ε

0, 0→ ε

1, 1→ εε, $→ ε

Figure 2.8: PDA for C = {wwR | w ∈ {0, 1}∗}

CHAPTER 2. CONTEXT-FREE LANGUAGES 28

Lecture 6

2.3.3 Converting CFL to PDA

Example. Convert the CFG G to PDA that recognizes L(G):

S → aTb | b

T → Ta | ε

Idea. For rule substitution, we replace the left-hand side variable with the right-hand side string
i.e.

A→ γ ⇒ pop A from stack, push γ to stack

if there are multiple productions for A, we push them in a reversed way.

qsstart

qloop

q1

q2

q3

qa

ε, ε→ $

ε, ε→ S

ε, $→ ε

ε, S → b

ε, T → ε

a, a→ ε

b, b→ ε

ε, S → b

ε, ε→ Tε, ε→ a

ε, T → a

ε, ε→ T

Figure 2.9: PDA for CFG G

Remark. There are two transitions we must add to process the "input":

a, a→ ε

b, b→ ε

The procedure of converting CFG to PDA is as follows:

qstart
ε→ qloop, {S, $}

ε→ q1, {b, $}
ε→ q2, {T, b, $}

ε→ qloop, {a, T, b, $}
a→ qloop, {T, b, $}

ε→ q3, {a, b, $}
ε→ qloop, {T, a, b, $}

ε→ q3, {a, a, b, $}
ε→ qloop, {T, a, a, b, $}

ε→ q3, {a, a, a, b, $}
ε→ qloop, {T, a, a, a, b, $}

ε→ qloop, {a, a, a, b, $}
a→ qloop, {a, a, b, $}

a→ qloop, {a, b, $}
a→ qloop, {b, $}

b→ qloop, {$}
ε→ qaccept

CHAPTER 2. CONTEXT-FREE LANGUAGES 29

Lecture 6

Proposition 2.3.1. Even with a non-deterministic setting, we ensure that only strings generated by
this CFG can be accepted by the PDA

• A string is accepted only if all characters are processed (this is part of the PDA definition!)

• We have $ to ensure that the stack is empty in the end

2.3.4 Converting PDA to CFL

Lemma 2.3.1. Language recognized by PDA =⇒ context free

Note. We need PDA to satisfy

1◦ Single start state

2◦ Stack empty before accepting

3◦ Each transition push or pop, but not both

Idea. For each pair of states p, q ∈ Q of a PDA P , we have Apq and

Apq generates x⇒ P from p with empty stack to q with empty stack, reading x

First, we discuss how to handle transitions

∀p, q, r ∈ Q, Apq → AprArq

We let the

• x-axis: input string

• y-axis: stack height

p r q

Figure 2.10: PDA transition Apq → AprArq

If we can go

from p to r without changing stack

and

from r to q without changing stack

then we can do

from p to q without changing stack

CHAPTER 2. CONTEXT-FREE LANGUAGES 30

Lecture 6

Next, we have
∀p, q, r, s ∈ Q, a, b ∈ Σε, t ∈ Γ

If,
(r, t) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, t)

we discuss how to handle transitions
Apq → aArsb

Then we have

p a b q

r

t

s

t

Figure 2.11: PDA transition Apq → aArsb

Finally, we have the following base case:

∀p ∈ Q, App → ε

To follow the condition (1◦), we give a new example

Example. Consider the language L = {0n1n | n ≥ 1}.

Now q1 is not an accept state

q1start q2

q3q4

ε, ε→ $
0, ε→ 0

1, 0→ ε

1, 0→ ε
ε, $→ ε

Figure 2.12: PDA for A = {0n1n | n ≥ 1}

Consider two elements in Γ

t0 = $, t1 = 0

• t = $

p r s q t a b
1 2 3 4 $ ε ε

then we can get the rule
A14 → A23

CHAPTER 2. CONTEXT-FREE LANGUAGES 31

Lecture 6

• t = 0

p r s q t a b
2 2 2 3 0 0 1
2 2 3 3 0 0 1

then we can get the rules

A23 → 0A221

A23 → 0A231

Other rules: 64 rules

A11 → A11A11

A11 → A12A21

A11 → A13A31

A11 → A14A41

...

and

A11 → ε

A22 → ε

A33 → ε

A44 → ε

2.3.5 Procedure of converting PDA to CFL

Proposition 2.3.2. Given a PDA

P = (Q,Σ,Γ, δ, q0, {qaccept})

We construct a CFG with variables

var(G) = {Apq | p, q ∈ Q}

and start variable
S = Aq0qaccept

With rules

1◦ Single start state

2◦ Stack empty before accepting

3◦ Each transition push or pop, but not both

A new start qs → qs′ with ε, ε → $, and for any q ∈ F , we have ε, a → ε back to q, ∀a ∈ Σ. Then
from any q ∈ F , we do ε, $→ ε to qa

CHAPTER 2. CONTEXT-FREE LANGUAGES 32

Lecture 6

qs′start · · ·

q1

q2

Figure 2.13: PDA with single accept state and empty stack before accepting

The new one will become

qs′qs

start

· · ·

q1

q2

qa
ε, ε→ $

ε, a→ ε ε, b→ ε

ε, a→ ε ε, b→ ε

ε, $→ ε

ε, $→ ε

These is not enough to ensure condition (3◦), we can do some modifications:

• To have each transition either push or pop (but not both), replace

q1
a, a→b−−−−→ q2

with the pair
q1

a, a→ε−−−−→ q3, q3
ε, ε→b−−−−→ q2.

• Likewise, replace
q1

a, ε→ε−−−−→ q2

with
q1

a, ε→X−−−−−→ q3, q3
ε,X→ε−−−−−→ q2,

where X is a fresh stack marker introduced for this simulation.

For another example, consider the PDA

qs′start q1 q2

q3

ε, ε→ a ε, ε→ b

a, a→ ε

After the modification, we have

qs start

qs′ q1 q2

q3 qa

ε, ε→ $

ε, ε→ a ε, ε→ b

a, a→ ε

ε, $→ ε

ε,
$
→
ε

ε, a → ε

ε, b→ ε

ε, a → ε

ε, b→ ε

CHAPTER 2. CONTEXT-FREE LANGUAGES 33

Lecture 6

The new PDA will accept the string a but the original PDA rejects it. Hence, we need to modify
something else:

• A new start qs → qs′ with ε, ε→ $

• A new state qpop that have ε, a→ ε back to qpop, ∀a.

• For q ∈ F , add a transition ε, ε→ ε from q to qpop

• Add a new accept state qa and a transition ε, $→ ε from qpop to qa

qs′qs

start

· · ·

q1

q2

qpop qa
ε, ε→ $

ε, a → ε

ε, b→ ε

ε, ε→
ε

ε,
ε→

ε

ε, $→ ε

Figure 2.14: PDA with single accept state and empty stack before accepting

CHAPTER 2. CONTEXT-FREE LANGUAGES 34

Lecture 7

2.4 Deterministic Pushdown Automata

Lecture 7
2025-11-03PDA is non-deterministic in general. However, there is a special class of PDA called Deterministic

Pushdown Automata (DPDA). From Ch.1 we know

DFA ≡ NFA

but
DPDA ̸= PDA =⇒ CFL ̸= DCFL

Definition 2.4.1 (Deterministic Pushdown Automaton (DPDA)). A deterministic pushdown automa-
ton (DPDA) is a 6-tuple

M = (Q,Σ,Γ, δ, q0, F)

where

• Q: States

• Σ: Input alphabet

• Γ: Stack alphabet

• δ: Transition function
Q× Σε × Γε → (Q× Γε) ∪ {∅}

• q0 ∈ Q: Start state

• F ⊂ Q: Set of accepting states

To build a DPDA, we first look at the different between PDA and DPDA.

As previously seen. For PDA,

δ : Q× Σε × Γε → P(Q× Γε)

Note. In DPDA, for ∀q ∈ Q, a ∈ Σ, x, γ ∈ Γ, at most and at least one of the following is true:

δ(q, a, x) = (p, γ), δ(q, a, ε) = (p, γ), δ(q, ε, x) = (p, γ), δ(q, ε, ε) = (p, γ)

the rest must be ∅.

2.4.1 Acceptance, Rejection of DPDA

The Rejection of DPDA is similar to PDA, which should only happen when

• Not end at an accept state after the last symbol.

• DPDA fails to read the input

1. pop an empty stack

2. Endless ε-transition

CHAPTER 2. CONTEXT-FREE LANGUAGES 35

Lecture 7

Example. L = {0n1n | n ≥ 0}

q1start q2

q3q4

ϵ, ϵ→ $
0, ϵ→ 0

1, 0→ ϵ

1, 0→ ϵ
ϵ, $→ ϵ

Figure 2.15: DPDA for L = {0n1n | n ≥ 0}

The Transition function is defined as follows:

0 1 ϵ

0 $ ϵ 0 $ ϵ 0 $ ϵ

q1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ (q2, $)

q2 ∅ ∅ (q2, 0) (q3, ϵ) qr ∅ ∅ ∅ ∅
q3 qr ∅ ∅ (q3, ϵ) ∅ ∅ ∅ (q4, ϵ) ∅
q4 qr qr ∅ qr qr ∅ ∅ ∅ ∅
qr qr qr ∅ qr qr ∅ ∅ ∅ ∅

To find this transition table, for instance,

• consider the state q1:
δ(q1, ε, ε) = (q2, $)

then we can implies that

δ(q1, a, γ) = δ(q1, a, ε) = δ(q1, ε, γ) = ∅, ∀a ∈ Σ = {0, 1}, γ ∈ Γ = {0, $}

• consider the state q2:
δ(q2, 1, 0) = (q3, ε)

then we can implies that

0 1 ϵ

0 $ ϵ 0 $ ϵ 0 $ ϵ

q2 ∅ ∅ (q2, 0) (q3, ϵ) ̸= ∅ ∅ ∅ ∅ ∅

due to
δ(q2, 1, ε) = δ(q2, ε, $) = δ(q2, ε, ε) = ∅

Formally we have
δ(q2, 1, $) = (qr, ε)

For the string 011, the computation of the DPDA is as follows:

q1
ϵ−→ q2, {$} q1

0−→ q2, {0, $} q1
1−→ q3, {$} q1

ϵ−→ q4, ∅

Follow the graph,
δ(q4, 1, ϵ) and δ(q4, ϵ, ϵ) = ∅

hence, the DPDA rejects 011.

CHAPTER 2. CONTEXT-FREE LANGUAGES 36

Chapter 3

The Church-Turing Thesis

Lecture 8
2025-11-103.1 Turing Machines

As previously seen. To discuss the computability of problems. We need a more powerful model.
We already have seen

• Finite Automata (FA): with limited memory (states)

• Pushdown Automata (PDA): unlimited memory with LIFO structure (stack)

We now introduce a new computational model called Turing Machine (TM), which has an unlimited
tape as memory.

CPU
0 1 1 0 · · · tape

Figure 3.1: Illustration of a Turing Machine

A Turing Machine consists of these properties different from FA and PDA:

• write/read tape

• head that can move left/right on the tape

• unlimited tape length

• reject/accept take immediate effect

• machine can never halt

Example.
B = {w#w | w ∈ {0, 1}∗}

Remark. We can proof that this language is not CFL by pumping lemma for CFL.

Notation. ⊔ is the blank symbol on the tape.

37

Lecture 8

Idea. Zig-zag to the corresponding places on the two sides of the # and determine whether they
match.

• Scan to check if ther is a #.

• Check w and w if they match.

0 1 1 0 0 0 # 0 1 1 0 0 0 ⊔

x 1 1 0 0 0 # 0 1 1 0 0 0 ⊔

x 1 1 0 0 0 # x 1 1 0 0 0 ⊔

Figure 3.2: Illustration of algorithm

Definition 3.1.1 (Turing Machine (TM)). A Turing Machine is a 7-tuple

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

where

• Q: States

• Σ: Input alphabet, where ⊔ /∈ Σ

• Γ: Tape alphabet, where Σ ⊂ Γ and ⊔ ∈ Γ

• δ: Transition function
δ : Q× Γ→ Q× Γ× {L,R}

• q0 ∈ Q: Start state

• qaccept ∈ Q

• qreject ∈ Q, qreject ̸= qaccept

The input
w = w1w2 · · ·wn ∈ Σ∗

will be put in the position 1, 2, · · · , n of the tape, and the rest of the tape is filled with ⊔.

Example.
L = {02

n

| n ≥ 0}

Idea. Cross off every second, and check if the remaining is even (except the last one).

0000

00

0

CHAPTER 3. THE CHURCH-TURING THESIS 38

Lecture 8

The procedure should be:

1◦ left → right, make remark on every second 0

2◦ if step 1◦ left with only one unmarked 0, accept

3◦ if step 1◦ left with odd #0 left, reject

4◦ move head to the leftmost

5◦ go to step 1◦

The definition of the machine is

Q = {q0, q1, q2, q3, q4, q5, qaccept, qreject}

Σ = {0}

Γ = {0, x,⊔}

q1

start

q2 q3

q4

q5

qr

qa

0→ ⊔, R

⊔ → R
x → R

x → R

0→ x, R

⊔ → R
0→ R

x → R

⊔ → L

0→ x, R

x → R
⊔ → R

0→ L
x → L

⊔ → R

Figure 3.3: TM for L = {02n | n ≥ 0}

Notation.
0→ R ≡ 0→ 0, R

Consider the input 0000:

q10000 ⊔q2000 ⊔xq300 ⊔x0q40 ⊔x0xq3
⊔x0q5x ⊔xq50x ⊔q5x0x q5 ⊔ x0x ⊔q2x0x
⊔xq20x ⊔xxq3x ⊔xxxq3⊔ ⊔xxq5x ⊔xq5xx
⊔q5xxx q5 ⊔ xxx ⊔q2xxx ⊔xq2xx ⊔xxq2x
⊔xxxq2 ⊔xxx ⊔ qa

The transition function table is as follows:
0 x ⊔

q1 q2,⊔, R qreject, x, R qreject,⊔, R
q2 q3, x, R q2, x, R qaccept,⊔, R
...

CHAPTER 3. THE CHURCH-TURING THESIS 39

Lecture 8

Note. There is no need for transition for qaccept and qreject since the machine halts when it enters
these states.

Idea. We can get the design idea of Turing Machine

• q1 : mark the start by ⊔

– first element must be 0, otherwise, reject

– Using ⊔, so the start is known

• q2 → q3: handle initial 00

• q3 → q4 → q3: sequentially 00→ 0x

– If not pairs (e.g., 0x0x0x), fails

– This is the place of checking if # of remained zeros is even

• q3 → q5 → q2 back to beginning

• first First 0 (or ⊔) is considered the single final 0

q2 → · · · → q2 → · · · → qaccept

check if a single 0 is left in the string.

3.1.1 Configuration of Turing Machine

Definition 3.1.2 (current configuration). The current configuration of a Turing Machine is repre-
sented as

uqv

where

• u ∈ Γ∗: the string on the left of the head

• q ∈ Q: the current state

• v ∈ Γ∗: the string on the right of the head

The head is reading the first symbol of v. If v = ϵ, then the head is reading a blank symbol ⊔.

Definition 3.1.3. a, b, c ∈ Γ, u, v ∈ Γ∗, qi, qj ∈ Q then the transition from configuration

• If δ(qi, b) = (qj , c, L), then
uaqibv ⊢ uqjacv

• If δ(qi, a) = (qj , b, L), then
uaqibv ⊢ uacqjv

CHAPTER 3. THE CHURCH-TURING THESIS 40

Lecture 8

3.1.2 Turing Recognizable and Turing Decidable Languages

Definition 3.1.4 (Turing Recognizable). A language L is Turing recognizable if some Turing Machine
M recognizes it.

For a Turing Machine there are three possible outcomes:

• Accept the input by entering qaccept

• Reject the input by entering qreject

• Loop forever without halting

A language is very difficult to difficult to decide if the TM loops forever on some inputs. We now define
a more restricted type of model, called Decider.

Definition 3.1.5 (Turing Decidable). A language L is Turing decidable if some Turing Machine M

decides it.

We will discuss more about Decidability in later chapters (Ch.4).

3.1.3 Example of Turing Machine

Example. L = {w#w | w ∈ {0, 1}∗}

q1

start

q2 q8 q3

q4 qa q5

q7 q6

0→ x,R
#→ R 1→ x,R

0, 1→ R

#→ R

x→ R

⊔ → R

0, 1→ R

#→ R

x→ R
0→ x, L

x→ R
1→ x, L

0, 1, x→ L

#→ L
0, 1→ L

x→ R

Figure 3.4: Turing Machine of L = {w#w | w ∈ {0, 1}∗}

Remark. Links to qr are not shown

CHAPTER 3. THE CHURCH-TURING THESIS 41

Lecture 9

Simulate 01#01

q101#01 xq21#01 x1q2#01 x1#q401

x1q6#x1 xq71#x1 q7x1#x1 xq11#x1

xxq3#x1 xx#q5x1 xx#xq51 xx#q6xx

xxq6#xx xq7x#xx xxq1#xx xx#q8xx

xx#xxq8⊔ xx#xx ⊔ qa

Idea. The diagram:
q1 → q2 → q4 → q6

check 0 at the same position of the two strings

q1 → q3 → q5 → q6

check 1 at the same position of the two strings

Example. C = {aibjck | i× j = k, i, j, k ≥ 1}

Idea. The procedure should be:

1◦ check if the input is a+b+c+

2◦ back to the leftmost a

3◦ fix an a, for each b, cross off a c

4◦ store b back, cancel one a, repeat step 3

• Step 1 can be done by a DFA (as DFA is a special case of TM).

• Step 2 can be done by moving left until ⊔ is reached.

• Step 3 is similar to previous examples.

Example. E = {#x1#x2 · · ·#xl | xi ∈ {0, 1}∗, xi ̸= xj}

Idea. Sequentially compare every pairs

x1x2, x1x3, . . . , x1xl

x2x3, . . . , x2xl

...

xl−1xl

For xi, xj , mark #’s strings by #̇ i.e.

#̇x1#x2#̇x3 : x1 and x3 are compared

We can copy xi, xj to the right end of the tape and compare them there with the pattern of w#w.

CHAPTER 3. THE CHURCH-TURING THESIS 42

Lecture 9

Lecture 9
2025-11-243.2 Multi-tape Turing machines

3.2.1 Variants of Turing machines

Example. The transition function may be defined as

δ : Q× Γ→ Q× Γ× {L,R, S}

Notation. S stands for “stay”, meaning the head does not move.

This kind of Turing machine can be simulated by a standard Turing machine.

q1, a→ q2, b, S ≡ q1, a→ qtemp, b, R

qtemp, γ → q2, γ, L ∀γ ∈ Γ

3.2.2 Multi-tape Turing machines

In this variant, there are multiple tapes, each with its own head.

• Input: In the first tape.

• Other tapes: Blank initially.

Definition 3.2.1 (Multi-tape Turing machine). Transition function:

δ : Q× Γk → Q× Γk × {L,R, S}k (for k tapes)

Example. Given w = 02n, n ≥ 1 ⇒ Generate ww.

Idea. We have the following simulation:

• Copy w into the second tape.

• Check if |w| is even.

• copy w from the second tape to the first tape (append).

q0

start

q1 q2 q3 q4

qa

0→ R
⊔ → R

0→ R
⊔ → 0, R

⊔ → L
⊔ → L

0→ R
0→ L

⊔ → L
0→ L

⊔ → 0, R
⊔ → 0, R

⊔ → 0, R
0→ R

⊔ → R
⊔ → R

Figure 3.5: Multi-tape Turing machine to compute ww from w = 02n

CHAPTER 3. THE CHURCH-TURING THESIS 43

Lecture 9

For the simulation details,

• q0 → q1: Use ⊔ to indicate the beginning of the second tape.

• loop in q1: Copy w from the first tape to the second tape.

• q2 → q3 → q2:

1◦ Check if length of w is even.

2◦ Head of the first tape zig-zag between last 0 and then ⊔ after.

3◦ Head of the second tape moves to the beginning.

Remark. If length of w is even, we will at q3 when reaching the beginning of the second tape.

• q4: copy w from the second tape to the first tape (append).

Below is the illustration of the simulation 0000:

q0 0 0 0 0
⊔ ⊔ ⊔ ⊔

0
⊔ q1

0 0 0
⊔ ⊔ ⊔ · · · 0 0 0 0

⊔ 0 0 0 q1
⊔
⊔

0 0 0
⊔ 0 0 q2

0
0

0 0 0 0 q3
⊔ 0 q3 0 0

0 0 0 q2 0
⊔ q2 0 0 0

0 0 0 0 q3
q3 ⊔ 0 0 0

0 0 0 0 0 q4
0 q4 0 0 0 ⊔ · · · 0 0 0 0 0 0 0 0 q4

0 0 0 0 q4

Below is the illustration of the simulation 000:

q0 0 0 0
⊔ ⊔ ⊔

0
⊔ q1

0 0
⊔ ⊔ · · · 0 0 0

⊔ 0 0 q1
⊔
⊔

0 0
⊔ 0 q2

0
0

0 0 0 q3
⊔ q3 0 0

0 0 q2 0
q2 ⊔ 0 0

Note. Due to the properties of “deterministic”,

δ(q0, 0, 0), δ(q0, 0,⊔) δ(q0,⊔, 0), δ(q0,⊔,⊔)

those not specified transitions go to qr.

3.2.3 Multi-tape TM ≡ Single-tape TM

CPU
0 1 1 0 · · · tape 1

a a c a · · · tape 2

0 0 1 1 · · · tape 3

CPU

0 1̇ 1 · · · # a a ċ · · · # 0̇ 0 · · ·

Figure 3.6: Simulation of multi-tape Turing machine by single-tape Turing machine

• # can be used to separate different tapes.

• ċ can be used to indicate the head position of each tape.

• Γ′ = {Γ, Γ̇}

CHAPTER 3. THE CHURCH-TURING THESIS 44

Lecture 9

Example. Right shifting a sequece w.

qs

q0

q1

qa

0→ ⊔, R

1→ ⊔, R

1→ 0, R

0→ R

0→ 1, R

1→ R

⊔ → 0

⊔ → 1

Figure 3.7: Single-tape simulation Turing machine to right shift a sequence

Note. Because Γ is finite, the simulation must succeed by add state for each γ ∈ Γ.

3.3 Nondeterministic Turing Machines

Definition 3.3.1 (Nondeterministic Turing machine). Transition function:

δ : Q× Γ→ P(Q× Γ× {L,R})

In NTM, by definition w is accepted if any branch works, which means unless all branches are finite,

NTM −→ accept or loop

Thus, NTM is an “acceptor”.

Example. A = {w contain aab}

q0start q1 q2 qa

qr

a, b→ a, b, R

a→ R a→ R b→ R

⊔ → R
b→ R
⊔ → R a→ R

⊔ → R

Figure 3.8: Nondeterministic Turing machine to accept A = {w contain aab}

Note. Determine where aab starts nondeterministically.

Example. L = {0n | n-composite number}

• Nondeterministically guess p, q, sequentially try from 2 to n− 1.

• Check if n = p× q

CHAPTER 3. THE CHURCH-TURING THESIS 45

Lecture 9

3.3.1 NTM ≡ TM

A language is Turing-recognizable⇒ it is recognized by a NTM, due to TM being a special case of NTM.
Proof done for ⇐ direction.

For the other direction, we need to simulate NTM by TM. Like NFA we use a tree structure to represent
the computation finite # branches. To traverse the tree, we can use BFS or DFS.

Remark. BFS is preferred, because DFS may get stuck in an infinite branch.

CPU

0 1 1 1 0 · · · tape 1

x x 1 1 0 · · · tape 2

1 2 3 2 3 · · · tape 3

Figure 3.9: Simulation of NTM by TM using multi-tape Turing machine

• Tape 1: Store the input, never alter.

• Tape 2: Simulate the current branch up to certain layer by copying Tape 1.

• Tape 3: Store the path to a node.

Definition 3.3.2. Suppose max # branches is 3 at each node. If the content of the 3rd tape
is 231 that means

root→ 2nd child→ 3rd child→ 1st child

Hence, NTM can be simulated by 3-tape TM, and we have shown that multi-tape TM can be simulated
by single-tape TM. Thus, NTM ≡ TM. ■

Corollary 3.3.1. NTM is a decider if all branches halt on all inputs.

Language decidable⇔ some NTM decides it

Proof. We separate into two directions.

⇒ One TM decides it and a TM is an NTM. This TM halts on all inputs (one branch)

⇐ Now NTM terminates on all branches. We can construct a TM to decide the language

– each branch is finite every input halts ∃ a finite max length.

– # branches finite. The tree to process this input is finite.

– Thus the three-tape TM used earlier can accept/reject the input in a finite number of
steps.

■

CHAPTER 3. THE CHURCH-TURING THESIS 46

Lecture 9

3.4 Hilbert’s problems
Informally, an algorithm is a collection of instructions. Not until 1900 did Hilbert propose 23 unsolved
problems in mathematics. The 10th problem is:

Is there a general method to determine whether a given polynomial equation with integer
coefficients has an integer solution?

Hilbert didn’t use the word “algorithm” but “general method”. However, Hilbert explicitly asked the
algorithm be “devises”.

3.4.1 Church-Turing thesis

This is proposed by Alonzo Church and Alan Turing in 1936.

Any function which would naturally be regarded as computable can be computed by a Turing
machine.

Definition 3.4.1.
Intuitive Algorithm ≡ Turing machine algorithm

3.4.2 Hilbert’s 10th problem

Using the Church-Turing thesis, we have a question:

Question. Define
D = {P | P : polynomial with integer root}

is D decidable?

We first simplify the problem to one variable case.

D1 = {P | P : polynomial of x with integer root}

If we try all integers one by one, it may not halt if no integer root exists. Thus, D1 is Turing-recognizable
but not decidable.

However, it can be proved that roots of a 1-variable polynomial is within the range

−M ≤ x ≤M, M = ±kmax |ci|
|c1|

where

• k: # of terms

• ci: coefficients of the polynomial

• c1: leading coefficient

For instance, for 4x3 − 2x2 + x− 7, we have

M = ±4 · 7
4
= ±7

CHAPTER 3. THE CHURCH-TURING THESIS 47

Lecture 9

The multi-variable case is much more complicated. In 1970, Matiyasevich proved that no such algorithm
exists. Thus, we have the conclusion:

Theorem 3.4.1 (Matiyasevich, 1970). D is not decidable.

3.4.3 Description of Turing machines

A Turing machine can be describe in 3 levels:

• High-level description: Describe the operations of the Turing machine without manage the tape
and head.

• Implementation-level description: Describe how the Turing machine move the head.

• Formal description: Specify the states, input alphabet, tape alphabet, transition function, start
state, accept state, and reject states of the Turing machine.

Example. Describe a Turing machine that decides the language

A = {⟨G⟩ | G : a connected undirected graph}

• High-level description: We separate into three steps.

1◦ Mark node in G.

2◦ Repeat until no new nodes marked:

– For each node in G, if it is marked, mark all its neighbors.

3◦ If all nodes marked: accept, otherwise: reject.

• Implementation-level description:

⟨G⟩ = (1, 2, 3, 4)((1, 2), (2, 3), (3, 1), (1, 4))

is the input format.

3 2

4

1

Figure 3.10: Graph representation on tape

– The first step is to check if the input is in the correct format.

– In the first step we begin with seeing if the first part of the input ⟨G⟩ includes distinct numbers
(as node IDs should be different)

– This is similar to an example before.

{#x1#x2# · · ·xn# | xi ∈ {0, 1}∗, xi ̸= xj}

– Then we can talk about how the head is moved.

CHAPTER 3. THE CHURCH-TURING THESIS 48

Chapter 4

Decidability

Lecture 10
2025-12-14.1 Decidability

If we have a algorithm, we want to check if the problem is solvable or not on the computer. We need a
TM to decide it, i.e. accept or reject in finite # steps.

Definition. We first give some definitions of the languages.

Definition 4.1.1 (A). A is the language

A = {⟨M,w⟩ |M accepts w}

Definition 4.1.2 (E). E is the language

E = {⟨M⟩ |M : L(M) = ∅}

Definition 4.1.3 (EQ). EQ is the language

EQ = {⟨M1,M2⟩ |M1,M2 : L(M1) = L(M2)}

Definition 4.1.4 (HALT). HALT is the language

HALT = {⟨M,w⟩ |M : L(M) halts on w}

Definition 4.1.5 (REGULAR). REGULAR is the language

REGULAR = {⟨M⟩ |M : L(M) is regular}

Definition 4.1.6 (ALL). ALL is the language

ALL = {⟨M⟩ |M : L(M) = Σ∗}

49

Lecture 10

4.1.1 ADFA is Decidable

Example. Consider the language

ADFA = {⟨B,w⟩ | B is a DFA that accepts w}

The input of the problem is a pair of a DFA and a string, note that both can be encoded as a string.

Idea. Input: ⟨B,w⟩ where B is a DFA and w is a string.

1◦ Simulate B on input w.

2◦ If B accepts, then accept. If B rejects, then reject.

We first put
B = (Q,Σ, δ, q0, F)

into the tape, then we put w after it. Then checking if w ∈ Σ∗. Then simulate w according to δ. After
reading the whole w, check if the current state is in F .

4.1.2 ANFA is Decidable

Example. Consider the language

ANFA = {⟨B,w⟩ | B is an NFA that accepts w}

We can use the subset construction to convert NFA to DFA, then use the previous algorithm.

4.1.3 AREX is Decidable

Example. Consider the language

AREX = {⟨R,w⟩ | R : regular expression generates w}

We first convert R to an NFA B using the standard construction, then use the previous algorithm.

Remark. We have a procedure to convert a regular expression to an equivalent NFA. Then we can
use the algorithm for ANFA to decide AREX.

The key idea is that we have procedures to convert of regular languages is in finite steps.

4.1.4 EDFA is Decidable

Example. Consider the language

EDFA = {⟨A⟩ | A : DFA, L(A) = ∅}

i.e. A accepts no strings.

Idea. Input: ⟨A⟩ where A is a DFA.

DFA accepts something ⇔ reaching a final state from q0 after several links

1◦ Mark q0.

2◦ Repeat until no new state is marked:

CHAPTER 4. DECIDABILITY 50

Lecture 10

• For each transition δ(q, a) = p, if q is marked, then mark p.

3◦ If no q ∈ F is marked, then accept. Otherwise, reject.

There are at least one new q ∈ Q marked in each iteration, so the algorithm halts in at most |Q| iterations.

4.1.5 EQDFA is Decidable

Example. Consider the language

EQDFA = {⟨A,B⟩ | A,B : DFA, L(A) = L(B)}

Idea. Let a DFA C be the exclusive or of A and B.

L(A) = L(B)⇔ L(C) = ∅

A B

Exclusive or of A and B

Formally, we can construct C as follows:

L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

• B is DFA ⇒ B is DFA.

• A,B DFA ⇒ A ∩B is DFA.

4.1.6 ACFG is Decidable

Example. Consider the language

ACFG = {⟨G,w⟩ | G : CFG that generates w}

Note. The possible derivation of w is ∞, but for a CFG in Chomsky Normal Form (CNF), any
derivation of w has exactly 2|w| − 1 steps. If q = |R|, the number of variables, then the number of
possible derivations is at most q2|w|−1.

Idea. Input: ⟨G,w⟩ where G is a CFG.

1◦ Convert G to an equivalent CFG G′ in CNF.

2◦ Check all q2|w|−1 possible derivations.

CHAPTER 4. DECIDABILITY 51

Lecture 10

4.1.7 ECFG is Decidable

Example. Consider the language

ECFG = {⟨G⟩ | G : CFG, L(G) = ∅}

Idea. Input: ⟨G⟩ where G is a CFG. We use the bottom-up approach to find all variables that can
generate some terminal strings.

• From A→ a we search for
B → A

We repeat this

1◦ Mark all the terminals.

2◦ Repeat until no new variable is marked:

• if
A→ U1U2 · · ·Uk

and
all U1, U2, . . . , Uk are marked

then mark A.
• If start variable is not marked, accept. Otherwise, reject.

Number of variables is finite, so the algorithm halts in finite steps. Furthermore, each iteration is finite
procedure with checking all the rule.

4.1.8 EQCFG is Undecidable

Example. Consider the language

EQCFG = {⟨G,H⟩ | G,H : CFG, L(G) = L(H)}

Because CFL is not closed under the complement operation, we cannot use the same idea as EQDFA.
We should use the technique of reduction to prove it is undecidable (Ch.5).

Converting PDA to TM is not really work, due to the fact that PDA has infinite stack, one can be stuck
in the operation of push() some symbols. We can only find the corresponding grammar G for the CFL.
Then running the TM that decides ACFG on input ⟨G,w⟩.

regular

contex-free
decidable

Turing-recognizable

Figure 4.1: Classes of Languages

CHAPTER 4. DECIDABILITY 52

Lecture 10

4.2 Halting Problem
In program verification is in general undecidable (unsolvable). Here is a classic example of undecidable
problem, the Halting Problem.

4.2.1 Diagonalization Method

Definition 4.2.1. Two set are equal if elements can be paired up.

Giving an example

Definition 4.2.2 (one-to-one function). A fucntion f : A→ B is one-to-one if

f(a) ̸= f(b) if a ̸= b

Definition 4.2.3 (onto function). A function f : A→ B is onto if

∀b ∈ B, ∃a ∈ A such that f(a) = b

Definition 4.2.4 (correspondence). A correspondence between two sets A and B is a function
f : A→ B that is both one-to-one and onto.

Example. Consider the function

f(a) = a2, where A = (−∞,∞) and B = (−∞,∞)

This is not an onto function because for b = −1, there is no a ∈ A such that f(a) = b.

Example. Consider the function

f(a) = a2, where A = [0,∞) and B = [0,∞)

Becoming an onto function. However, it is not one-to-one because f(1) = f(−1) = 1.

Example. Consider the function

f(a) = a3, where A = (−∞,∞) and B = (−∞,∞)

This is a correspondence because it is both one-to-one and onto.

Remark. Correspondence is a way to pair the elements in two sets. If there is a correspondence
between two sets, then they have the same cardinality (size).

Definition 4.2.5 (countable). A set A is countable if there is a correspondence between A and N
or a finite subset of N.

CHAPTER 4. DECIDABILITY 53

Lecture 10

Theorem 4.2.1. Consider the set of rational numbers Q, where

Q =
{m

n

∣∣∣ m,n ∈ N
}

which is countable.
Proof. Here is one way to list all the rational numbers:

...

5
1

4
1

3
1

2
1

1
1

...

5
2

4
2

3
2

2
2

1
2

...

5
3

4
3

3
3

2
3

1
3

...

5
4

4
4

3
4

2
4

1
4

...

5
5

4
5

3
5

2
5

1
5

...

5
6

4
6

3
6

2
6

1
6

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 4.2: Counting the rational numbers

However, for the set of real numbers R, it is uncountable. We can use the diagonalization method
to prove it. ■

Theorem 4.2.2. Consider the set of real numbers R, which is uncountable.

Proof. Assume R is countable, then we can list all the real numbers, we can construct a table of
the corresponing decimal as follow:

Index Real Number
1 0.d11d12d13d14d15 . . .

2 0.d21d22d23d24d25 . . .

3 0.d31d32d33d34d35 . . .

4 0.d41d42d43d44d45 . . .

5 0.d51d52d53d54d55 . . .
...

...

Figure 4.3: Listing all the real numbers

Then we consider a new real number r = 0.r1r2r3 . . . where

ri =

5 if the i-th digit of f(i) ̸= 5

6 if the i-th digit of f(i) = 5

By construction,
r ̸= f(n), ∀n ∈ N

But r ∈ R, which contradicts our assumption. Therefore, R is uncountable. ■

CHAPTER 4. DECIDABILITY 54

Lecture 10

Remark. To avoid
1 = 0.999999 . . .

we can simply avoid using 0, 9 in our construction.

4.2.2 NOT Turing-Recognizable

We known that Σ∗ is countable, because we can list all the strings in order of length. Also, the set of all
TMs is countable, because each TM can be encoded as a string (i.e. set of TMs is a subset of Σ∗).

Now, let L : set of all languages over Σ

B : set of all infinite binary sequences

For any language A ⊆ Σ∗, we can construct a corresponding infinite binary sequence χA = b1b2b3 . . .

where

bi =

1 if si ∈ A

0 if si /∈ A

where s1, s2, s3, . . . is the enumeration of all strings in Σ∗. This construction is in diagonalization way.
This gives a correspondence between L and B. Since B is uncountable (by diagonalization method), L
is also uncountable.

Each Turing machine corresponds to a language that it recognizes. Since the set of all TMs is countable,
the set of all Turing-recognizable languages is also countable. Therefore, there are languages that are
not Turing-recognizable.

4.2.3 Halting Problem is Undecidable

Racall that halting problem is defined as

Theorem 4.2.3. We define the language

ATM = {⟨M,w⟩ |M : TM that accept w}

The language ATM is undecidable.

Proof. Assume H is a TM that decides ATM. Then we get

H(⟨M,w⟩) =

accept if M accepts w

reject Otherwise

Then we can construct a new TM D with H by running it on input ⟨M, ⟨M⟩⟩. The behavior of D
is defined as follows:

D(⟨M⟩) =

accept if H(⟨M, ⟨M⟩⟩) = reject

reject if H(⟨M, ⟨M⟩⟩) = accept

which can be simplified as

D(⟨M⟩) =

accept if M rejects ⟨M⟩

reject if M accepts ⟨M⟩

CHAPTER 4. DECIDABILITY 55

Lecture 10

But we have a contradiction when we run D on input ⟨D⟩:

D(⟨D⟩) =

accept if D rejects ⟨D⟩

reject if D accepts ⟨D⟩

■

Note. The diagonalization method is use in here again. Set of TMs is countable, so we can list all
the TMs as M1,M2,M3, Then we can construct a table as follows:

M1 M2 M3 · · ·
⟨M1⟩ b11 b12 b13 · · ·
⟨M2⟩ b21 b22 b23 · · ·
⟨M3⟩ b31 b32 b33 · · ·

...
...

...
...

. . .

Figure 4.4: Listing all the TMs and their behavior on their own encoding

where

bij =

1 if Mj accepts ⟨Mi⟩

0 if Mj rejects, or loops on ⟨Mi⟩

Then we know H decides ATM as it is a decider, we have

M1 M2 M3 · · ·
⟨M1⟩ b11 b12 b13 · · ·
⟨M2⟩ b21 b22 b23 · · ·
⟨M3⟩ b31 b32 b33 · · ·

...
...

...
...

. . .

Figure 4.5: Listing all the TMs and their behavior on their own encoding

where

bii =

A if Mi accepts ⟨Mi⟩

R if Mi rejects ⟨Mi⟩

Then we can construct a new TM D which output the opposite of the diagonal entries, then we get
a contradiction when we run D on input ⟨D⟩.

⟨M1⟩ ⟨M2⟩ . . . ⟨D⟩
M1 R
M2 R

.. .
D ?

Figure 4.6: Contradiction on the diagonal entries

CHAPTER 4. DECIDABILITY 56

Lecture 10

4.2.4 co-Turing-Recognizable

Definition 4.2.6 (co-Turing-recognizable). A language L is co-Turing-recognizable if its comple-
ment L is Turing-recognizable.

Theorem 4.2.4. A language L is decidable if and only if it is both Turing-recognizable and co-
Turing-recognizable.

Proof. We seperately prove the two directions.

⇒ If L is decidable, then there is a TM M that decides L. We can use M to recognize L and L.
Hence, L is both Turing-recognizable and co-Turing-recognizable.

⇐ Now A,A are both Turing-recognizable by TM M1 and M2 respectively. We can construct a
new TM M that decides L as follows:

1◦ On input w, run M1 and M2 in parallel on input w.
2◦ If M1 accepts, then accept. If M2 accepts, then reject.

Since w ∈ L or w /∈ L, either M1 or M2 will eventually accept w. Thus, M halts on all inputs,
and decides L.

Proof complete. ■

CHAPTER 4. DECIDABILITY 57

Chapter 5

Reducibility

Lecture 11
2025-12-1As previously seen.

ATM is undecidable.

We want to prove that other languages are undecidable. We can do a technique called reducibility.

5.1 Reducibility

Definition 5.1.1 (reduction). Let A and B be languages. We say that A is mapping reducible to
B, written A ≤m B, if there exists a computable function f : Σ∗ → Σ∗ such that for every w ∈ Σ∗,

w ∈ A⇔ f(w) ∈ B.

The function f is called a reduction from A to B. Which means the converting process from an
instance of problem A to an instance of problem B, and B can be used to solve A.

Theorem 5.1.1. If A ≤m B

B is decidable ⇒ A is decidable.

and
A is undecidable ⇒ B is undecidable.

5.1.1 ETM is Undecidable

Example. Consider the language

ETM = {⟨M⟩ |M is a TM and L(M) = ∅}.

Assume ETM is decidable. We can get a decider R for ETM. From this, we can construct a decider S

for ATM as follows:

• On input ⟨M,w⟩, where M is a TM and w is a string:

1. Construct a new TM M1 as follows:

L(M1) = ∅ ⇔M does not accept w (1)

58

Lecture 11

2. Run R on input ⟨M1⟩.
3. If R accepts, then reject. If R rejects, then accept.

This construction is valid because of (1). Thus, if we had a decider for ETM, we could construct a decider
for ATM. But we know that ATM is undecidable, so our assumption that ETM is decidable must be false.
Therefore, ETM is undecidable.

Note. M1 takes input x and have

1. If x ̸= w, then reject.

2. If x = w, run M on input w and accept if M accepts w.

Clearly,
L(M1) = ∅ or {w}

We see that M accepts w ⇒ L(M1) = {w} ̸= ∅

L(M1) ̸= ∅ ⇒M accepts w

Thus, condition (1) holds.

5.1.2 REGULARTM is Undecidable

Example. Consider the language

REGULARTM = {⟨M⟩ |M is a TM and L(M) is a regular language}.

As before, assume this language is decidable and has a decider R. We can construct a decider S for ATM

as follows:

• On input ⟨M,w⟩, where M is a TM and w is a string:

1. Construct a new TM M2 recognize:a regular language if M accepts w

a non-regular language if M rejects w
(1)

2. Run R on input ⟨M2⟩.
3. If R accepts, then accept. If R rejects, then reject.

• Then we get S S accepts if M accepts w

S rejects if M rejects w

which is a decider for ATM. Combining the R and M2 we can get a decider for ATM. Getting a
contradiction. Thus, REGULARTM is undecidable.

Note. M2 recognizes the language

L(M2) =

Σ∗ if M accepts w

{0n1n | n ≥ 0} if M rejects w

We know that Σ∗ is regular and {0n1n | n ≥ 0} is not regular. Thus, condition (1) holds.

The implementation of M2 on input x is as follows:

CHAPTER 5. REDUCIBILITY 59

Lecture 11

1. If x is in the form 0n1n, then accepts.

2. If x is not in the form 0n1n, then simulate M on input w, and accept if M accepts w.

5.1.3 EQTM is Undecidable

Example. Consider the language

EQTM = {⟨M1,M2⟩ |M1,M2 : TM, L(M1) = L(M2)}.

Assume EQTM is decidable. We can get a decider R for EQTM. From this, we can construct a decider
S for ETM as follows:

• On input ⟨M⟩, where M is a TM:

1. Running R on input ⟨M,M∅⟩, where M∅ is a TM such that

L(M∅) = ∅.

2. If R accepts, then accept. If R rejects, then reject.

This construction is valid because

L(M) = ∅ ⇔ L(M) = L(M∅).

Thus, if we had a decider for EQTM, we could construct a decider for ETM. But we know that ETM is
undecidable, so our assumption that EQTM is decidable must be false. Therefore, EQTM is undecidable

5.2 Computation Histories

Definition 5.2.1. M is a TM and w is an input string. An accepting computation history of M
on w is

C1, C2, . . . , Cl

where

• C1 is the start configuration of M on input w,

• Cl is an accepting configuration, and

• for each i, Ci legally yields Ci+1.

Note. A rejection computation history is defined similarly, except that Cl is a rejecting configura-
tion. If M loops on input w, then there is no computation history of M on w.

Remark. Deterministic TM has at most one (maybe reject or loop) computation history on input
w, while a nondeterministic TM may have many computation histories on input w.

CHAPTER 5. REDUCIBILITY 60

Lecture 11

5.2.1 Linear Bounded Automata (LBA)

Definition 5.2.2 (LBA). A linear bounded automaton (LBA) is a TM with a tape of limited
length. Specifically, for an input string of length n, the tape head is not allowed to move beyond
the first n cells on the tape. If the head tries to move right at the end of input, the head stays

CPU
0 1 1 0 tape

Figure 5.1: Linear Bounded Automaton (LBA)

Note. ADFA, ACFG, EDFA, ECFG are all LBA-decidable.

Theorem 5.2.1. LBA has a finite number of configurations.

Proof. For an LBA M with q : # states of M = |Q|

g : # symbols of M = |Γ|

Then M has at most
q · gn · n

distinct configurations on an input of length n. Which is because:

• q ways to choose the current state,

• gn ways to choose the content of the tape (only first n cells matter),

• n ways to choose the position of the tape head.

Thus, the total number of configurations is finite qngn. ■

5.2.2 ALBA is Decidable

Example. Consider the language

ALBA = {⟨M,w⟩ |M : LBA that accepts w}.

We only have to concern about is there loop or not, because if it halts then it either accepts or rejects.
From the previous theorem, we know that an LBA has a finite number of configurations. Thus, if an
LBA M on input w ever repeats a configuration, then M will loop forever.

5.2.3 ELBA is Undecidable

Example. Consider the language

ELBA = {⟨M⟩ |M : LBA, L(M) = ∅}.

The question of M accepts w can be solved by checking if L(B) = ∅, where B is an LBA constructed
from M and w. Thus, we assume ELBA is decidable and has a decider R. We can construct a decider S

for ATM as follows:

• On input ⟨M,w⟩, where M is a TM and w is a string:

CHAPTER 5. REDUCIBILITY 61

Lecture 11

• B recognize all accepting computation histories of M on input w.M accepts w ⇒ L(B) ̸= ∅

M rejects w ⇒ L(B) = ∅

• Run R on input ⟨B⟩.

• If R accepts, then reject. If R rejects, then accept.

The implementation of B on input x we check if it is an accepting computation history for M on w. To
be specifically, we check if x is

#C1#C2# · · ·#Cl# (1)

and C1 . . . Cl satisfies that

• C1 is the start configuration of M on input w,

• Cl is an accepting configuration, and

• for each i, Ci legally yields Ci+1.

CPU

· · · # x q3 a b # x x q5 b # · · ·

Figure 5.2: Machine B checking computation history

Note. To check the conditions in (1), B can scan through the input multiple times. Each time
checking one of the conditions.

1. For the first condition, B checks if C1 matches q0w.

2. For the last condition, B checks if Cl contains an qaccept.

3. To check the middle condition, B checks each pair Ci and Ci+1 to see if Ci legally yields Ci+1.
This can be done by zigzags between Ci and Ci+1. If this requires more space than the input
length, but it is fine since the extra space for comparision is no more than |#C1 . . .#Cl#|
which is finite.

5.2.4 ALLCFG is Undecidable

As previously seen.

ECFG = {⟨G⟩ | G : CFG, L(G) = ∅} is decidable.

Example. Consider the language

ALLCFG = {⟨G⟩ | G : CFG, L(G) = Σ∗}.

It is impossible to check if G gernerates all strings. We assume ALLCFG is decidable. We have

G generates Σ∗ ⇔M does not accept w

which is equivalent to G generates Σ∗ if M does not accept w

G fails some strings if M accepts w

CHAPTER 5. REDUCIBILITY 62

Lecture 11

If we have a decider on G, then we can have a decider for ATM. Getting a contradiction. If M accepts
w, we let G fail to generate an accepting computation history of M on w. i.e. G generates all strings

1. Not starting with C1, or

2. Not ending with an accepting configuration, or

3. Ci does not legally yield Ci+1 for some i.

To construct such a CFG G, we can construct a PDA to nondeterministically checks three branches for
the three requirements. The hardest one is the third branch, which can be done by pushing Ci into the
stack and popping from the stack to compare with Ci+1. To fix the order issue, we can push(pop) in
this order

→︸ ︷︷ ︸
C1

←︸ ︷︷ ︸
CR

2

→︸ ︷︷ ︸
C3

←︸ ︷︷ ︸
CR

4

· · ·# ︸︷︷︸
Cl

#

CHAPTER 5. REDUCIBILITY 63

Chapter 6

Complexity Theory

Lecture 12
2025-12-86.1 Big-O Notation

As previously seen. We have dicussed the concept of solvable

Decidable⇒ Computationally Solvable

However, not all algorithms are created equal. Some algorithms are more efficient than others. To
analyze the efficiency of algorithms, we use Big-O Notation.

6.1.1 Analysis of Algorithms

• Worst Case: The maximum number of steps taken by an algorithm for any input of size n.

• Average Case: The expected number of steps taken by an algorithm for a random input of size n.

Usually, we focus on the worst-case analysis to ensure that our algorithm performs.

Definition 6.1.1. We use a function
f : N→ R+

to represent the number of steps.

• n: length of input

• f(n): number of steps

Then we give the definition of Big-O notation.

Definition 6.1.2 (Big-O Notation). We say

f(n) = O(g(n))

if
∃c > 0, n0 ∈ N such that ∀n ≥ n0, f(n) ≤ c · g(n)

64

Lecture 12

Consider the following example.

Example. f(n) = 6n3 + 5

We have
6n3 + 5 ≤ 7n3 for n ≥ 2

That is, we can choose c = 7 and n0 = 2. Thus,

f(n) = O(n3)

Additionally, we can also say f(n) = O(n4) as

6n3 + 5 ≤ 7n4 for n ≥ 2

Example. f(n) = 3n log2 n+ 5n log2 log2 n

We can prove that
f(n) = O(n logn)

Note. Note that the base of the logarithm does not matter in Big-O notation since

loga n =
logb n
logb a

= c · logb n = O(logb n)

From
n ≤ 2n, ∀n ≥ 1

we have
log2 n ≤ n

From this, we can deduce that
log2 log2 n ≤ log2 n

Therefore,
f(n) ≤ 3n log2 n+ 5n log2 n = 8n log2 n, ∀n ≥ 1

Lemma 6.1.1.
O(n) +O(n2) = O(n2)

Proof. Formally,
f(n) = O(n), g(n) = O(n2)⇒ f(n) + g(n) = O(n2)

By definition, ∃c1, n1, ∀n ≥ n1, f(n) ≤ c1n

∃c2, n2, ∀n ≥ n2, g(n) ≤ c2n
2

Then,
f(n) + g(n) ≤ c1n+ c2n

2 ≤ (c1 + c2)n
2, ∀n ≥ max(n1, n2)

Thus, we choose c = c1 + c2 and n0 = max(n1, n2) ■

CHAPTER 6. COMPLEXITY THEORY 65

Lecture 12

Lemma 6.1.2 (Exponential Function).
f(n) = 2O(n)

if ∃ c, n0 such that
f(n) ≤ 2c·n, ∀n ≥ n0

Lemma 6.1.3 (Constant Function).
f(n) = O(1)

if ∃ c, n0 such that
f(n) ≤ c · 1, ∀n ≥ n0

Thus,
f(n) ≤ max{f(1), . . . , f(n0 − 1), c}, ∀n

i.e.
f(n) is bounded by a constant for all n

6.1.2 small o Notation

Definition 6.1.3 (small o Notation). We say

f(n) = o(g(n))

if
lim
n→∞

f(n)

g(n)
= 0

Note. Follow the definition of limit, if

lim
n→∞

f(n) = L

then for any ϵ > 0, ∃δ such that
∀n > δ, |f(n)− L| < ϵ

Then, for small o notation, we have

∀c > 0, ∃n0 such that ∀n ≥ n0,
f(n)

g(n)
≤ (<)c

Remark. O versus o:f(n) = O(g(n)) if ∃c > 0, n0 such that ∀n ≥ n0, f(n) ≤ c · g(n)

f(n) = o(g(n)) if ∀c > 0, ∃n0 such that ∀n ≥ n0, f(n) < c · g(n)

Example. Consider
A = {0k1k | k ≥ 0}

What is the # steps taken by a one-tape Turing machine to process a string?

We can separate the process into these steps:

1◦ We have to check if input is
0 . . . 01 . . . 1

CHAPTER 6. COMPLEXITY THEORY 66

Lecture 12

which takes O(n) steps.

2◦ Then, move back, which takes O(n) steps.

3◦ Next, we cross off one 0 and one 1, which takes O(n) steps.

4◦ We repeat steps 2 and 3 until all 0s and 1s are crossed off, which has n/2 iterations.

Thus, the total number of steps is

O(n) +
n

2
·O(n) +O(n) = O(n2)

Definition 6.1.4 (Time Complexity Class).

TIME(t(n)) ≡ {L | a language decided by an O(t(n)) TM}

Now we have
A = {0k1k | k ≥ 0} ∈ TIME(n2)

But we can do better: We first cross off every other 0 and then cross off every other 1. This way, we can
do

0000011111

0011

01

ϵ

The key is the length of the string left must be always even.

Algorithm 6.1: Decide Language A = {0k1k | k ≥ 0}
Input: String w

Output: Accept or Reject
1 if format is not 0∗1∗ then
2 return Reject;

3 while tape contains any 0s or 1s do
4 Scan tape to count total number of active 0s and 1s;
5 if total count is Odd then
6 return Reject;

7 for each type x ∈ {0, 1} do
8 Keep the 1st x, cross off the 2nd x, keep the 3rd x...

9 return Accept;

The whole process takes
1 + log2 n

iterations, and each iteration takes O(n) steps. Thus, the total number of steps is

O(n logn)

Thus, we have
A ∈ TIME(n logn)

We can’t do any better than this since

CHAPTER 6. COMPLEXITY THEORY 67

Lecture 12

Theorem 6.1.1. Any language decided in o(n logn) time by a one-tape Turing machine is regular.

But we know that A is not regular.

Remark. If we want to use the method of copying, the problem is that the copy operation is
expensive. It takes O(n2) times to copy n symbols.

We can also do an O(n) algorithm using a two-tape Turing machine.

1◦ Check if input is
0 . . . 01 . . . 1

which takes O(n) steps.

2◦ Copy all 0s to the 2nd tape, which takes O(n) steps.

3◦ Sequentially match each 1 on the 1st tape with a 0 on the 2nd tape, which takes O(n) steps. (if no
0 left, reject)

4◦ If all 1s are matched, accept; else, reject.

The total number of steps is
O(n) +O(n) +O(n) = O(n)

But this requires a two-tape Turing machine.

6.2 Time Complexity

As previously seen. In Ch.3 we have dicussed the concept of various Turing machines, which are
all equivalent in Computability Theory.

However, in Complexity Theory, different Turing machines may have different time complexities for the
same language.

6.2.1 Multi-tape TM and Time Complexity

Theorem 6.2.1. Let t(n) ≥ n. For a t(n) time multi-tape Turing machine, there exists an equivalent
O(t(n)2) time single-tape Turing machine.

Proof. Recall the simulation of multi-tape TM by single-tape TM.

CPU
0 1 1 0 · · · tape 1

a a c a · · · tape 2

0 0 1 1 · · · tape 3

CPU

0 1̇ 1 · · · # a a ċ · · · # 0̇ 0 · · ·

Figure 6.1: Simulation of Multi-tape TM by Single-tape TM

To simulate each step of multi-tape TM, we scan to know where heads point to and do the update.
However, we have to right shift the tape. Si we need to know the tape length which is

k ×O(t(n)) = O(t(n)) for constant k

A t(n) multi-tape TM generates at most O(t(n)) contens in O(t(n)) time. Thus, the cost of simu-

CHAPTER 6. COMPLEXITY THEORY 68

Lecture 12

lating each step of multi-tape TM is O(t(n)). Therefore, the total time is

O(t(n))×O(t(n)) = O(t(n)2)

■

Definition 6.2.1. NTM Time Complexity t(n) is the maximum # steps the machine uses for any
path from root to leaf in the computation tree for any input of size n.

Theorem 6.2.2. Let t(n) ≥ n. For a t(n) single-tape NTM, there exists an equivalent 2O(t(n)) time
single-tape TM.

Proof. Assume b is the maximal number of branches at each node. Recall the way to simulate
NTM by multi-tape TM.

CPU

0 1 1 1 0 · · · tape 1

x x 1 1 0 · · · tape 2

1 2 3 2 3 · · · tape 3

Figure 6.2: Simulation of NTM by Multi-tape TM

We use BFS to do the simulation in the computation tree. The total nodes in the computation tree,
which can be found in the tape 3 (record the path from root to node) is

1 + b+ b2 + · · ·+ bt(n) =

t(n)∑
i=0

bi = O(bt(n))

Cost of running from root to one node in tape 2 is O(t(n)), and the cost of updating tape 3 is also
O(t(n)). Thus, the total cost of simulating each node is

nodes× cost per node = O(bt(n))×O(t(n)) = 2O(t(n))

Note. that
bt(n) × t(n) = 2log2(b

t(n)t(n)) = 2t(n) log2 b+log2 t(n) = 2O(t(n))

This is by the three-tape TM simulating the NTM. By the previous theorem, we can simulate the
three-tape TM by a single-tape TM in

(2O(t(n)))2 = 2O(t(n))

■

CHAPTER 6. COMPLEXITY THEORY 69

Lecture 12

6.3 Languages in P

Definition 6.3.1 (Class P).
P ≡

⋃
k

TIME(nk)

i.e. the class of languages decidable by a polynomial-time deterministic Turing machine.

Note. P class is roughly the class of solvable problems in computer.

6.3.1 PATH Problem

Example.
PATH = {⟨G, s, t⟩ | G is a directed graph s.t. ∃ path from s to t}

We can prove that
PATH ∈ P

Intuition. Let’s start with a brute force way

1◦ m : |V (G)|

2◦ |path| ≤ m (since no loop)

3◦ #paths ≤ mm

4◦ sequentially check if on has s to t

Total time:
O(mm ·m) = O(mm+1)

which is exponential time.

For an input ⟨G, s, t⟩, we can use the following algorithm including V (G), E(G)

1◦ Mark s

2◦ Repeat until no new node is marked:

• For each edge (u, v) ∈ E(G), if u is marked, mark v

3◦ If t is marked, accept; else, reject.

steps in the main loop is at most |V | (if no newly marked node, we stop). at each iteration, we have
to scan |E| ≤ |V |2. The cost to mark node is polynomial. Thus, the total time is

O(|V |)×O(|E|) = O(|V |3)

Therefore,
PATH ∈ P

6.3.2 Relatively Prime Problem

Definition 6.3.2 (Relatively Prime). Let x, y ∈ Z. We say x and y are relatively prime if their
greatest common divisor (gcd) is 1, i.e.,

gcd(x, y) = 1

CHAPTER 6. COMPLEXITY THEORY 70

Lecture 12

Example.
RELPRIME = {⟨x, y⟩ | x, y ∈ N are relatively prime}

From the definition, we have to find a way to compute gcd(x, y) efficiently. We can use the Euclidean
Algorithm.

Algorithm 6.2: Euclidean Algorithm
Input : ⟨x, y⟩
Output: Greatest Common Divisor of x and y

1 while y ̸= 0 do
2 x← x mod y;
3 exchange x and y;

4 return x;

Note. If x < y, then in the first iteration, we have

x← x mod y = x

and then exchange x and y. Thus, after the first iteration, we have x ≥ y.

At each iteration, x or y is reduced by at least half.

• If x > y

x mod y ≤ x

2

– If x < 2y, then
x mod y = x− y < x− x

2
=

x

2

– If x ≥ 2y, then
x mod y ≤ y ≤ x

2

Therefore,
iterations ≤ 2max(log2 x, log2 y) = O(n)

where n is the length of the input (x, y are stored as bit string), log2 x+ log2 y = O(n).
In each iteration, x mod y is polynomial time computable. Exhanging x and y is also polynomial time.
Thus, the total time is

O(n)× poly(n) = poly(n)

Theorem 6.3.1.
Context Free Language ⊆ P

Proof. Recall the CYK algorithm for CFLs in CNF. For an input string of length n, the total time
is

O(n3)

■

CHAPTER 6. COMPLEXITY THEORY 71

Lecture 12

6.4 Languages in NP

6.4.1 Hamiltonian Path Problem

For some problems, it is difficult to find an algorithm in P. Consider the following example.

Definition 6.4.1 (Hamiltonian Path). A Hamiltonian Path in a directed graph is a path that visits
all vertex exactly once.

s t

Figure 6.3: Hamiltonian Path Example

Example.

HAMPATH = {⟨G, s, t⟩ | G : a directed graph with a Hamiltonian path from s to t}

A brute-force way: checking all possible paths, but the number is exponential. So we can do a
polynomial-time verification instead.

for a path, in P time⇒ a Hamiltonian path or not

6.4.2 Compositeness Problem

Definition 6.4.2 (Compositeness). We say x ∈ N is composite if ∃ p, q ∈ N such that

x = p · q, 1 < p, q < x

Given x, it is difficult to find such p, q efficiently. However, if we are given p, q, we can verify it in
polynomial time by multiplication.

However, there are still some problems that are difficult to verify in polynomial time, such as the Graph
Isomorphism Problem, or the complement of Hamiltonian path problem

HAMPATH = {⟨G, s, t⟩ | G : a directed graph without a Hamiltonian path from s to t}

Verification is difficult since we have to check all possible paths.

6.4.3 Verifier

Definition 6.4.3 (Verifier). An algorithm V is called a verifier for a language L if

L = {w | ∃c (certificate) such that V accepts ⟨w, c⟩}

Example. Compositeness problem: V accepts

⟨w, c⟩ = ⟨x, p⟩, where p is a factor of x

CHAPTER 6. COMPLEXITY THEORY 72

Lecture 12

Example. HAMPATH problem: V accepts

⟨w, c⟩ = ⟨⟨G, s, t⟩, path from s to t⟩

c is called a certificate or witness that helps to verify w ∈ L.

Definition 6.4.4 (Polynomial-time Verifier). A verifier V is called a polynomial-time verifier if V
runs in polynomial time with respect to |w|.

Remark. Note that the running time of V is with respect to |w|, not |c|. For a polynomial-time
verifier, we have

|c| ∈ poly(|w|)

otherwise, V reading c alone would take super-polynomial time.

6.4.4 Class NP

Definition 6.4.5 (Class NP).

NP ≡ {L | L has a polynomial-time verifier}

Another equivalent definition of NP is as follows.

Definition 6.4.6 (NTIME class).

NTIME(t(n)) = {L | L is decidable by a O(t(n)) nondeterministic TM}

Theorem 6.4.1.
NP =

⋃
k

NTIME(nk)

For the NTM for language HAMPATH, we do

1◦ Nondeterministically get a path from s to t in the list p1 · · · pm
2◦ For each list:

• Check for repetitions.
• Check if each edge (pi, pi+1) exists in G.
• Check if s = p1 and t = pm

Cost on each list is polynomial. The repetitions cost O(m2), checking edges cost O(m2), checking s and
t cost O(m). Thus, the total time is

O(m2) +O(m2) +O(m) = O(m2)

Therefore,
HAMPATH ∈ NTIME(n2)⇒ HAMPATH ∈ NP

CHAPTER 6. COMPLEXITY THEORY 73

Lecture 12

6.4.5 NP ≡ Polynomial-time NTM

Theorem 6.4.2. ⋃
k

NTIME(nk) = {L | L decide by a polynomial-time NTM}

Proof. We start from the definition:

Idea. We consider both directions.

“⇒” NTM by guessing certificate.

“⇐” using NTM’s accepting branch as certificate.

“⇒” Recall the definition of NP.

L = {w | ∃c (certificate) such that V accepts ⟨w, c⟩}

We have
|c| ∈ poly(|w|)⇒ |c| ≤ |w|k

because to handle ⟨w, c⟩ in |w|k, |c| should be bounded by polynomial of |w|.

Then we use NTM to

1◦ Nondeterministically guess c with length ≤ |w|k.
2◦ Simulate V on input ⟨w, c⟩.

That is, we run all c in parallel and each is polynomial time. We have that for any w ∈ L, the
NTM accepts in polynomial time. Thus,

L ∈ NTIME(nk)

“⇐” Assume
L ∈ NTIME(nk)

i.e. w is accepted by a polynomial NTM. We let c be any accepting branch where each branch
is polynomial time. Then we run the verifier V that handles ⟨w, c⟩ in polynomial time. Thus,

L has a polynomial-time verifier

Proof complete. ■

6.4.6 SUBSET-SUM Problem

Example.

SUBSET-SUM =

{
⟨S, t⟩

∣∣∣∣∣ ∃ S′ ⊆ S such that
∑
x∈S′

x = t

}

Note that we allow repetition of elements in S. We will prove that

SUBSET-SUM ∈ NP

Consider any input ⟨⟨S, t⟩, c⟩. We

1◦ Check if
∑

ci = t

2◦ Check if ci ∈ S

CHAPTER 6. COMPLEXITY THEORY 74

Lecture 12

3◦ If both hold, accept; else, reject.

The cost of summation is O(|S|), and checking ci ∈ S also takes O(|S|). Thus, the total time is

O(|S|) +O(|S|) = O(|S|)

Therefore,
SUBSET-SUM ∈ NP

6.4.7 P versus NP and NP-completeness

Roughly

• P: problems that can be solved in polynomial time.

• NP: problems that can be verified in polynomial time.

The greatest open question in computer science is whether

P = NP ?

It has shown that
P ⊆ NP

. However, it is not known whether
P = NP or P ̸= NP

For certain problems in NP, if we can find a polynomial time algorithm to solve one of them,

P = NP

These problems are called NP-complete problems. We will discuss NP-completeness in the next lec-
ture.

CHAPTER 6. COMPLEXITY THEORY 75

	Basic Knowledge
	Mathematical Notions
	Definitions, Theorems, and Proofs

	Regular Languages
	Deterministic Finite Automata (DFA)
	Nondeterministic Finite Automata (NFA)
	Regular expressions
	Pumping lemma

	Context-Free Languages
	Context-Free Grammars (CFG)
	Chomsky Normal Form
	Pushdown Automata
	Deterministic Pushdown Automata

	The Church-Turing Thesis
	Turing Machines
	Multi-tape Turing machines
	Nondeterministic Turing Machines
	Hilbert's problems

	Decidability
	Decidability
	Halting Problem

	Reducibility
	Reducibility
	Computation Histories

	Complexity Theory
	Big-O Notation
	Time Complexity
	Languages in P
	Languages in NP

