
Linear Algebra

Vinsong

December 9, 2025



Abstract

The lecture note of 2025 Fall Linear Algebra by professor 李明穗（Amy Lee）.



Contents

0 Introduction 3
0.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2 Abstract Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.3 Applied Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Matrices and Gaussian Elimination 4
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Geometry of Linear Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 An Example of Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Matrix Notation and Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Triangular Factors and Row Exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Inverse and Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 Transpose AT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Vector Spaces and Linear Equation 24
2.1 Vector Spaces and Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 The Solution of m Equations in n Unknows . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Linear Independence, Basis and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 The Four Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Graph and Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Orthogonality 50
3.1 Perpendicular Vectors and Orthogonal Subspaces . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Inner Product and Projections onto Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Projections and Least Squares Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Orthogonal Bases, Orthogonal Matrices and Gram-Schmidt Orthogonalization . . . . . . . 63

4 Determinant 69
4.1 Introduction to Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 The Properties of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Formulas for the Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Appplications of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Eigenvalues and Eigenvectors 76
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Diagonalization of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Difference Equations and Powers Ak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

1



A SVD and Applications 88
A.1 Singular Value Decomposition (SVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.2 Applications of SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

CONTENTS 2



Chapter 0

Introduction

Lecture 1
2 Sep. 13:200.1 Geometry

• linear

• To study geometry with linearity

• In a different dimension:

– In 2D: lines

– In 3D: planes

– In nD: hyperplanes

0.2 Abstract Algebra

Definition 0.2.1 (Linear Algebra). Here is the definition of Linear algebra.

• Algebra is the study of basic "mathematical structure."
e.g. Group, Ring, Field, ...etc.

• Linear Algebra studies one of the structures called vector space.

Note. Followed by logical deduction from the basic definition, we can derive some theorems.

0.3 Applied Science
• Mathematic: ODE, PDE.

• Linear Programming: developing during World War II

• Imange Processing, Computer Vision, Computer Graphic, etc.
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Chapter 1

Matrices and Gaussian Elimination

1.1 Introduction
The central problem of Linear Algebra is the solution of Linear Equations. The most important and
simplest case is when the # of unknowns equals to the # of equations.

Note. There are two ways to solve linear equations:

• The method of elimination (Gaussian Elimination)

• Determinants (Crammer’s Rule)

1.1.1 Four aspects to follow

(1) The geometry of linear equations.

Note. n = 2, n = 3 → higher dimensional space.

(2) The interpretation of elimination is a factorization of the coefficient matrix.

Definition. Some notation to define:

Definition 1.1.1 (Scalar, Matrix, Vector).

Ax = b


α, β, γ : scalar

A,B,C : matrix

a, b, c : vector

Definition 1.1.2 (Lower/Upper triangular matrix).

A = LU

L : lower triangular matrix

U : upper triangular matrix

Definition 1.1.3 (Transpose/Inverse).

AT /A−1 :

AT : Transpose of matrix A

A−1 : Inverse of matrix A

4



Lecture 1

(3) Irregular case and Singular case (no unique solution):

Note. no solution or infinitely many solutions

(4) The # of operations to solve the system by elimination

1.2 Geometry of Linear Equation

Example. Consider the linear equation below:2x− y = 1

x+ y = 5

• approach 1: row picture → two lines in plane

00
55

55

(x, y) = (2, 3) =⇒ (2, 3) is the intersection of two lines

Figure 1.1: Row Picture

• approach 2: column picture

00-4-4 -2-2 22 44

-2-2

22

44

66

(
2

1

)
2

(
2

1

)
+ 3

(
−1
1

)
=

(
1

5

)
=⇒

(
−1
1

)

(
1

5

)

Figure 1.2: Column Picture
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Lecture 1

Lemma 1.2.1 (Linear Combination).

x

(
2

1

)
+ y

(
−1
1

)
=

(
1

5

)

To find the Linear Combination of

(
2

1

)
and

(
−1
1

)
to reach

(
1

5

)

Note. A vector is a n× 1 array with n real numbers, cn is
c1
...
cn


But in the text, we use

(c1, · · · , cn)

to represent.

Definition. Here are some operations on matrix:

Definition 1.2.1.

α


c1
...
cn


n×1

=


α · c1

...
α · cn


n×1

, α ∈ R

Definition 1.2.2. 
c1
...
cn

+


d1
...
dn

 =


c1 + d1

...
cn + dn


n×1

Definition 1.2.3.
y ∈ R

y ∈ R2 =⇒ y =

(
y1

y2

)
2×1

y1, y2 ∈ R

y ∈ R3 =⇒ y =

y1

y2

y3


3×1

y1, y2, y3 ∈ R

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 6



Lecture 1

Example. Consider the linear equation below:
2u+ v + w = 5

4u− 6v = −2

−2u+ 7u+ 2w = 9

• Row picture

1

2

0.5 1
1.5 2

5

u

v

w

(u, v, w) = (1, 1, 2)

Lemma 1.2.2. in n-dimension, a line require (n− 1) equation.

Question. How to extend into n-dimensions?
Answer. Consider the following steps:

– Each equation represents a plane or hyperplane.

– The first equation produces a (n− 1)-dimension plane in Rn

– The second equation produces another (n− 1)-dimension plane in Rn

– Their intersection in smaller set of (n− 2)-dimension

– (n− 3)→ (n− 4)→ · · · · · · → 3→ 2→ 1→ point

Then we can find the final intersection. ⊛

• Column picture

u

 2

4

−2

+ v

 1

−6
7

+ w

1

0

2

 =

 5

−2
9

 ⇐=


2u+ v + w = 5

4u− 6v = −2

−2u+ 7u+ 2w = 9

RHS is a linear combination of 3 column vectors.

Theorem 1.2.1. Solution to a linear equation:

(intersection of to points
row pic.

) = (coefficient of linear combination
column pic.

)

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 7



Lecture 1

1.2.1 Singular Case

(1) Row Picture: In 3D case, they didn’t intersect at a point.

• Case 1: two parallel 2u+ v + w = 5

4u+ 2v + 2w = 9

• Case 2: three plane perpendicular (⊥)
u+ v + w = 2 · · · (1)

2u+ 3w = 5 · · · (2)

3u+ v + 4w = 6 · · · (3)

RHS⇒ (1) + (2) = (3) ; LHS⇒ (1) + (2) 6= (3)

• Case 2: three plane have a whole line in common.
u+ v + w = 2 · · · (1)

2u+ 3w = 5 · · · (2)

3u+ v + 4w = 7 · · · (3)

RHS⇒ (1) + (2) = (3) ; LHS⇒ (1) + (2) = (3)

• Case 4: three parallel

(2) Column Picture:

u

1

2

3

+ v

1

0

1

+ w

1

3

4

 = b

In the case above, three vectors are linear combination to each other, i.e. three vectors share the
same plane.

Lemma 1.2.3 (Singular case). If the three vectors are linear combination to each other (three
vector share a common plane), it must be singular case.

• If b =

2

5

7

, which is on the plane ⇒ too many solution to produce b.

• If b =

2

5

6

, which is not on the plane ⇒ no solution.

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 8



Lecture 2

1.2.2 Fundamental Linear Algebra Theorem (Geometry form)

Theorem 1.2.2 (Fundamental LA Theorem). Consider a linear system

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm.

If the n hyperplanes have no only one intersection or infinitely many points, then the n columns lie
in the same plane. (consistency of row picture and column picture)

Notation. Logic notation:

• If ..., then : ⇒

• If and only if : ⇔

Lecture 2
9 Sep. 13:201.3 An Example of Gaussian Elimination

Example. Here is a linear equation. 
2u+ v + w = 5

4u− 6v = −2

−2u+ 7v + 2w = 9

 2 1 1 5

4 −6 0 −2
−2 7 2 9

 =⇒

2 1 1 5

0 -8 −2 −12
0 8 3 14

 =⇒

2 1 1 5

0 −8 −2 −12
0 0 1 2

 "pivot"

Then we get w = 2, we can plug in the equation i.e.
2u+ v + 1w = 5

−8v − 2w = −12

w = 2

=⇒ Forward Elimination

Then we substitute into 2nd, 1st equation to get v = 1 and u = 1 =⇒ Backend Elimination

Note. By definition, pivots cannot be zero!

Question. Under what circumstances could the elimination process break down?

Answer. Here are some situations.

• Something must go wrong in the singular case.

• Something might go wrong in the nonsingular case.

A zero appears in a pivot position!
If in the process, there are nonzero pivots, then there’s only one solution. ⊛

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 9



Lecture 2

Example.  2 1 1 5

4 −6 0 −2
−2 7 2 9



(1) If a11 = 0 =⇒ nonsingular

(2) If a22 = 0 =⇒ nonsingular

(3) If a33 = 1 =⇒ singular

Question. How many separate arithmetical operations does elimination require for n equations in
n unknowns?

Answer. For a single operation.

a single operation = each division & each multiplication-subtraction

⊛

• FE:
x x · · · x = x
...

...
...

x x · · · x = x︸ ︷︷ ︸
n

n(n− 1) + (n− 1)(n− 2) + · · ·+ (12 − 1) =
n3 − n

3
∼ n3

3
steps

• RHS:
(n− 1) + (n− 2) + · · ·+ 1 =

n(n− 1)

2
∼ n2

2
steps

• BF:
1 + 2 + · · ·+ n =

n(n+ 1)

2
∼ n2

2
steps

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 10



Lecture 2

1.4 Matrix Notation and Matrix Multiplication
2u+ 4v +−2w = 2

4u+ 9v − 3w = 8

−2u− 3v + 7w = 10

=⇒ u

 2

4

−2

+ v

 4

9

−3

+ w

−2−3
7

 =

 2

8

10


We can rewrite it in the below form.

A =

 2 4 −2
4 9 −3
−2 −3 7


3×3

coefficient matrix

, x =

u

v

w


3×1

unknowns

, b =

 2

8

10


3×1

RHS

=⇒ x =

−12
2


3×1

solution

Ax = b

Definition 1.4.1. An m × n matrix, Am×n over R, is an array with m rows and n columns of real
numbers, which can be written as

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

 , where aij ∈ R,

i : index of row

j : index of column

• m× n is called the dimensions (size) of A =⇒ dimension of a ()3×5 is 3× 5

• aij is called the elements/entry/coefficient of A

• Addition: A = (aij)m×n, B = (bij)m×n

A+B = (aij + bij)m×n

• Multiplication: A = (aij)m×n, B = (bij)n×r

AB = (cij)m×r , where cij =

n∑
k=1

aik bkj

• Scalar Multiplication:
αA = (αaij)m×n

•
Am×n xn×1 = bm×1

In particular, if
A1×nBn×1 = v · w = ()1×1.

Then it’s the inner product of vector v and vector w

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 11



Lecture 2

Example.

Ax =

 2 4 −2
4 9 −3
−2 3 −7


−12

2

 =

 2 · (−1) 4 · (2) −2 · (2)
4 · (−1) 9 · (2) −3 · (2)
−2 · (−1) 3 · (2) −7 · (2)

 =

 2

8

22



(−1)

 2

4

−2

+ 2

4

9

3

+ 2

−23
7


(1) by row: 3 inner product

(2) by column: a linear combination of 3 columns of A

Example (1A). Ax is a combination of columns of A

Am×nxn×1 =
(
A1|A2| · · · |An

)

x1

x2

...
xn


= x1(A1) + x2(A2) + · · ·+ xn(An) =

 n∑
j=1

aij xj


m×1

1.4.1 The Matrix Form of One Elimination Step

Definition (1B). Matrix form

Definition 1.4.2. zero matrix:

O =


0 · · · 0
...

. . .
...

0 · · · 0



Definition 1.4.3. identity matrix:

I =


1 · · · 0

. . .
0 · · · 1

 = In = In×n;

Am×nIn = Am×n

Am×n = Am×nIn

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 12



Lecture 2

Definition 1.4.4. elementary matrix (elimination matrix):

Eij =



1 · · · 0 · · · 0

0
. . .

...
...

. . .
...

... −ℓ
. . . 0

0 · · · 0
jth column

· · · 1

 ith row

ℓ : multiplier

Eij ·A =

· · · −ℓ · · · 1




←− i-th =⇒ (i-th row) + (−ℓ)(j-th column)
←− j-th =⇒ create zero at (i, j) position!

Example.  1 0 0

−2 1 0

0 0 1


E21

 2 4 −2
4 9 −3
−2 −3 7


A

=

 2 4 −2
021 9 −3
−2 −3 7


EA

Note. Here is two properties

1. Ax = b =⇒ EijAx = Eijb

2. EijA 6= AEij

1.4.2 Matrix Multiplication

(1) The (i, j)-th entry of AB is the inner product of the i-th of A and the j-th of B.

(2) Each column of AB is the product of a matrix A and a column of B

=⇒ column j of AB = A times j-th of B

= linear combination of columns of A

= b1jA ·
any numbers

1
+ b2jA·2 + · · ·+ bnjA·n

Example. (
3 1 1

2 0 −1

)
A2×3

 5 0 1

−1 0 1

2 1 2


B3×3

=

(
16 1 1

8 0 −1

)
C2×3

1st column of AB =

(
16

8

)
= 5 ·

(
3

2

)
+ (−1) ·

(
1

0

)
+ 2 ·

(
1

−1

)

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 13



Lecture 2

(3) Each row of AB is a product of a row of A and a matrix B.

=⇒ i-th row of AB = of A times B.

= linear combination of rows of B

= ai1B1· + ai2B2· + · · ·+ ainBn·

Theorem 1.4.1. Let A,B and C be matrices (possibly rectangular). Assume that their dimension
permit them to be added and multiplied in the following theorem

(1) The matrix multiplication is associative

(AB)C = A(BC)

(2) Matrix operations are distributive

A(B + C) = AB +AC

(A+B)C = AC +BC

(3) Matrix multiplication is noncommutative

AB 6= BA in general

(4) Identity Matrix
An×nIn = InAn×n = An×n

Example.

E
21

=

 1 0 0

−2 1 0

0 0 1

 , F
31

=

 1 0 0

0 1 0

1 0 1

 , G
32

=

1 0 0

0 1 0

0 −1 1



(1)

E
21

F
31

=

 1 0 0

−2 1 0

1 0 1

 = F
31

E
21

=

 1 0 0

−2 1 0

1 0 1


(2)

E
21

G
32

=

 1 0 0

−2 1 0

0 −1 1

 6= G
32

E
21

(3)

G
32

F
31

E
21

=

 1 0 0

−2 1 0

3 −1 1


"right order"

6= E
21

F
31

G
32

=

 1 0 0

−2 1 0

1 −1 1



Note. The product of lower triangular matrices is a lower triangular matrix.

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 14



Lecture 3

Lecture 3
16 Sep. 13:201.5 Triangular Factors and Row Exchanges

Ax = b

=⇒ LUx = b =⇒

Lc = b

Ux = c

Example.

Ax =

 2 4 −2
4 9 −3
−2 −3 7


u

v

w

 =

 2

8

10

 = b

Remark. ℓ: multipliers
Eij(ℓ) : (i-th row) + (−ℓ)(j-th column)

 2 4 −2 2

4 9 −3 8

−2 −3 7 10

 R2+(−2)R1−−−−−−−→
R3+(1)R1

 2 4 −2 2

021 1 1 4

0 1 5 12

 R3+(−1)R2−−−−−−−→

 2 4 −2 2

0 1 1 4

0 032 4 8

 pivot

E21(2) = E =

 1 0 0

−2 1 0

0 0 1

 , E31(−1) = F =

1 0 0

0 1 0

1 0 1

 , E32(1) = G =

1 0 0

0 1 0

0 −1 1


i.e.

E21E31E32Ax =

2 4 −2
0 1 1

0 0 4


u

v

w

 = Ux = c =

2

4

8

 = E21E31E32b

Question. How can we undo the steps of Gaussian Elimination?

E−1F−1G−1GFEA = A = E−1F−1G−1︸ ︷︷ ︸ U = LU i.e. A = LU
factors of A

E−1 =

 1 0 0

−(−2) 1 0

0 0 1

 , F−1 =

 1 0 0

0 1 0

−(1) 0 1

 , G−1 =

1 0 0

0 1 0

0 −(−1) 1



E−1F−1G−1 =

 1 0 0

2 1 0

-1 1 1

=⇒ records everything that has been done so far

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 15
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1.5.1 Triangular Factorization

Theorem 1.5.1. If no exchanges are required, the original matrix A can be written as

A = LU

• The matrix L is lower triangular with 1’s on the diagonal and the multipliers ℓij (taken from
elimiation) below the diagonal.

• The matrix U is the upper triangular matrix which appears after forward elimination and
before back-substitution; its diagonal entries are the pivots.

Example. 2 −1 −1
0 −4 2

6 −3 0

 =

1 0 0

0 1 0

3 0 1


2 −1 −1
0 −4 2

0 0 4

⇒ 提出2

=

2 0 0

0 −4 0

6 0 3


1 −1/2 −1/2
0 1 −1/2
0 0 1



Question.

A =

(
4 5

1 2

)
; A =

 2 6 5

−1 4 −2
1 2 3

 ; A =


1 −1 0 0

−1 2 −1 0

0 −1 2 −1
0 0 −1 2


"triangular matrix" 有三條對角線

Answer. ⊛
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1.5.2 One Linear System = Two Triangular Systems

Ax = b =⇒ Ux = c & Lc = b =⇒ A = LU

Remark. The LU form is unsysttematic in one aspect. U has pivots along its diagonal where L

always has 1’s.
We can rewrite U as

U =


u11 u12 · · · u1n

0 u22 u2n

...
. . .

...
0 0 · · · unn

 =


u11 0 · · · 0

0 u22 0
...

. . .
...

0 0 · · · unn



1 u12/u11 · · · u1n/u11

0 1 u2n/u22

...
. . .

...
0 0 · · · 1



Example.

A =

(
3 4

1 2

)

=

(
1 0

1/3 1

)(
3 4

0 2/3

)
=

(
1 0

1/3 1

)
L

(
3 0

0 2/3

)
D

(
1 4/3

0 1

)
U

Theorem 1.5.2. If
A = L1D1U1 and A = L2D2U2

then
L1 = L2, D1 = D2, U1 = U2

i.e. if A has LDU decomposition, then it is unique.
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1.5.3 Row Excahnge and Permutation Matrices

P =

1 0 0

0 0 1

0 1 0

 〈Permutation matrix Pij〉

Note. Permutation matrix is also an elementary matrix.

Example. Here are some of the example:

1◦ 1 0 0

0 0 1

0 1 0


1

3

5

 =

1

5

3

 R2 ↔ R3

2◦

PA =

1 0 0

0 0 1

0 1 0


2 4 1

0 0 3

0 6 5

 =

2 4 1

0 6 5

0 0 3

 R2 ↔ R3

3◦

AP =

2 4 1

0 0 3

0 6 5


1 0 0

0 0 1

0 1 0

 =

2 1 4

0 3 0

0 5 6

 C2 ↔ C3

Note. For the permutation matrix:

1◦ PA: Performing row exchange of A

2◦ AP : Performing column exchange of A

3◦ PAx = Pb; Should we permute the component of x =

u

v

w

 as well? NONONONONO!!!

Example.

A =

0 a b

0 0 c

d e f

 Ax = b

(1) if d = 0, the problem is incurable. The matrix is singular.

(2) if d 6= 0, P13A =

d e f

0 0 c

0 a b

 ; if a 6= 0, P23P13A =

d e f

0 a b

0 0 c



P23P13 6= P13P23

row
1

2

3

→
3

2

1

→
3

1

2

1

2

3

→
1

3

2

→
2

3

1
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Theorem 1.5.3. We seperate into two cases:

• In the non singular case, there’s a permutation matrix P that reorders the rows of A to avoid
zeros in the pivot positions. In this case,

(1) Ax = b has a unique solution.

(2) It is found by elimination with row exchange

(3) With the rows reorders in advance, PA can be factored into LU 〈PA = LU〉

• In singular case, no reordering can produce a full set of pivots.

Example.

A =

1 1 1

1 1 3

2 5 8

 ℓ21=1///// ℓ31=1

−−−−−−−−→
ℓ31=2///// ℓ21=2

1 1 1

0 0 2

0 3 6

 P23−−→

1 1 1

0 3 6

0 0 2

 = U

L =

1 0 0

1 1 0

2 0 1

 〈This is WORNG〉 =

1 0 0

2 1 0

1 0 1



To summarize: A good code for Gaussian Elimination keeps a record of L,U and P . They allow the
solution (Ax = b) from two triangular systems. If the system Ax = b has a unique solution, they we say:

1◦ The system is nonsingular or

2◦ The matrix is nonsingular

Otherwise, it is singular.

1.6 Inverse and Transpose

Definition 1.6.1. An n× n matrix A is invertible if ∃ an n× n matrix B 3 BA = I = AB

Theorem 1.6.1. If A is invertible, then the matrix B satisfying AB = BA = I is unique!

Proof. Suppose ∃c 6= B 3 AC = CA = I

B = BI = B(AC) = (BA)C = IC = C i.e B = C

we call this matrix B, the inverse of A , and denoted as A−1 ■

Note. Not all n× n matrices have inverse.
e.g.

1◦ (
0 0

0 0

) (
1 1

1 1

)

2◦ if Ax = 0⃗ has a
x ̸=0

nonzero solution, then A has no inverse!

x = A−1(Ax) = A−10⃗ = 0⃗ (→←)
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Note. The inverse of A−1 is A itself. i.e. (A−1)−1 = A.

Note. If A = (a)1×1 and a 6= 0, then A−1 = ( 1a ). The inverse of

(
a b

c d

)
2×2

is

1

det(A)

(
d −b
−c a

)
if det(A) 6= 0

Note.

A =


d1 · · · 0

. . .
0 · · · dn

 di 6= 0, ∀i =⇒ A−1 =


1/d1 · · · 0

. . .
0 · · · 1/dn



Proposition 1.6.1. If A and B are invertible, then

• (AB)−1 = B−1A−1

• (A1A2 · · ·An)
−1 = A−1

n · · ·A−1
2 A−1

1

1.6.1 The Calculation of A−1: Gaussian-Jordan Method

A ·A−1 = I

An×nBn×n = In

=⇒ An×n(B1|B2| · · · |Bn)n×n = (e1|e2| · · · |en)n×n

=⇒ (AB1|AB2| · · · |ABn)n×n = (e1|e2| · · · |en)n×n

=⇒ AB1 = e1; AB2 = e2; · · · ; ABn = en −→ n linear systems:Ax = b

Definition 1.6.2 (Gaussian-Jordan Method). Instead of stopping at U and switching to back substi-
tution, it continues by subtracting multipliers of a row from the rows above till it reaches a diagonal
matrix. Then we divide each row by corresponding pivot.

(A
LU
|I) ×L−1−−−−→ (U |L−1)

×U−1

−−−−→ (I|A−1)

 2 −1 0 1 0 0

−1 2 −1 0 1 0

0 −1 2 0 0 1

 −→
 2 −1 0 1 0 0

0 3/2 −1 1/2 1 0

0 0 4/3 1/3 2/3 1



−→

 2 −1 0 1 0 0

0 3/2 −1 1/2 1 0

0 0 4/3 1/3 2/3 1

 −→
 1 0 0 3/4 1/2 1/4

0 1 0 1/2 1 1/2

0 0 1 1/4 1/2 3/4



A−1 =

3/4 1/2 1/4
1/2 1 1/2
1/4 1/2 3/4


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1.6.2 Invertible = Nonsingular

Question. What kind of matrices are invertible?

Answer. Here are the example:

1◦ nonzero pivot Ch1 Ch4

2◦ nonzero determinants Ch4

3◦ independent columns (rows) Ch2

4◦ nonzero eigenvalues Ch5

which will in the whole course ⊛

Suppose a matrix A has full set of nonzero pivots. By definition, A is nonsingular and the n systems

Ax1 = e1, Ax2 = e2, · · · , Axn = en

can be solved by elimination or Gaussian-Jordan Method.

Row exchanges maybe necessary, but the columns of A−1 are uniquely determined.

Ax = b PAx = Pb

PAxi = Pei

{Pe1, P e2, · · · , P en} = {e1, e2, · · · , en}

Note. Compute A−1:

1◦ A(x1| · · · |xn) = I = (e1| · · · |en) ⇐⇒ Axi = ei, i = i · · ·n

2◦ Gauss-Jordan Method: ( A | I ) −→ ( I | A−1 )

Question. We have found a matrix A−1 3 AA−1 = I. But is A−1A = I

Answer. We can do this by recall.

As previously seen. Recall that every Gauss-Jordan step is a multiplication of matrices on the
left. There are three types of elementary matrices:

1◦ Eij(ℓ) : to subtract a multiple ℓ of j row from i row.

2◦ Pij : to exchange row i and j
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3◦ Di(d) : to multiply row i by d i.e. Di(d) =



1 0

0
. . .

...
... d

...
...

. . . 0

0 1


→ ith row


d1 0

1
. . .

0 1



1 0

d2
. . .

0 1

 · · ·

1 0

1
. . .

0 dn

 =


d1 0

d2
. . .

0 dn


=⇒ DEEPEEA = I =⇒ A−1A = I ∴ we have a left inverse!

These are the operation of A−1 ⊛

Theorem 1.6.2. For nonsingular and invertible:

• Every nonsingular matrix is invertible.

• Every invertible matrix is nonsingular.

Theorem 1.6.3. A square matrix is invertible ⇐⇒ it is nonsingular

Lecture 4
23 Sep. 13:201.7 Transpose AT

Proposition 1.7.1. Here are the proposition of transpose

• (A+B)T = AT +BT

• (AT )T = A

• (AB)T = BTAT

• (A−1)T = (AT )−1

Proof. Here is the proof

1◦ ((A+B)T )ij = (A+B)ji = Aji +Bji = (AT +BT )ij

2◦ ((AB)T )ij = (AB)ji =

n∑
k=1

ajkbki (BTAT )ij =
∑n

ℓ=1 b
T
iℓa

T
ℓj =

∑n
ℓ=1 bℓiajℓ =

n∑
ℓ=1

ajℓbℓi

3◦

■
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Definition 1.7.1. A symmetric matrix is a matrix which equals its own transpose. i.e. A = AT

Example. (
2 1

1 3

)
YES

(
5 4

1 5

)
NO

(
0 0

0 0

)
YES

Note. A symmetric matrix is not necessarily invertible. If it is invertible, then its inverse is sym-
metric.

Theorem 1.7.1. If A is symmetric and if A can be factored as LDU , then A = LDUT

Proof. Here is the proof.

1◦ A = AT , A = LDU ⇒ AT = (LDU)T = UTDTLT = A = LDU

2◦ By theorem 1.5.2, the theorem is correct.

LDU is unique if they exist. ■
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Vector Spaces and Linear Equation

2.1 Vector Spaces and Subspace
To answer the basic questions about the existence

1◦
and uniquness

2◦
of the solution of Ax = b, we need the

concept of vector space.

Field =⇒ Vector Space =⇒ Solution of Ax = b

Definition 2.1.1 (Field). Let F be a set with two operations "+" and "·" i.e.

+ : F × F −→ F

· : F × F −→ F

and +, · are well-defined functions. If the system (F,+, ·) satisfies the following conditions, the
F is called a Field .
For a, b, c ∈ F

(1) (a+ b) + c = a+ (b+ c)

(2) a+ b = b+ a

(3) ∃ 0 ∈ F 3 a+ 0 = 0 + a = a 單位元素 (1st operation)

(4) ∀a ∈ F, ∃(−a) ∈ F 3 a+ (−a) = 0 反元素 (1st operation)

(5) (a · b) · c = a · (b · c)

(6) a · b = b · a

(7) ∃ 1 ∈ F 3 a · 1 = 1 · a = a 單位元素 (2nd operation)

(8) ∀a 6= 0 ∈ F, ∃ a−1 ∈ F 3 a · a−1 = a−1 · a = 1 反元素 (2nd operation)

(9) a · (b+ c) = ab+ ac Distribution Law

Example.
R

(real)
(YES) Q

(rational)
(YES) Z

(integer)
(NO) C

(complex)
(YES) N (NO)
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Definition 2.1.2 (vector space). Let V be a set and F be a field. V is a vector space over F if
addition

1◦
and multiplication by scalar

2◦
are defined on V and they satisfy.

+ : V × V −→ V

· : F × V −→ V

(A1) addition is associated

(A2) addition is commutative

(A3) ∃ zero vector ∈ V 3 0 + v = v + 0, ∀v ∈ V

(A4) ∀v ∈ V, ∃(−v)∈ V 3 (−v) + v = 0

(M1) 1 · v = v, v ∈ V, 1 ∈ F

(M2) (λµ) · v = λ(µv) v ∈ V, λ, µ ∈ F

(M3) λ(v1 + v2) = λv1 + λv2 v1, v2 ∈ V, λ ∈ F

(M4) (λ+ µ)v = λv + µv v ∈ V, λ, µ ∈ F

2.1.1 Algebraic Rules of Vector Algebra

Question. n ∈ N, Rn/R (Rn over R) is a vector space?

Answer. YES ⊛

Example.
Cn/C, Cn/R, R/R

Question. M2×2(R)/R is a vector space?

M2×2(R) =

{(
a b

c d

) ∣∣∣∣∣ a, b, c, d ∈ R

}

Answer. YES ⊛

Question. V is a vector space?

V = {all 3× 3 symmetric matrices over R}

Answer. YES ⊛

Question. R∞/R,R∞ = {(a1, a2, · · · · · · ) | ai ∈ R}

Answer. YES ⊛
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Question. Let V = {f | f is a real-valued function defined on [0, 1]} define (rf)(x) = r·f(x), r ∈ R

Answer. YES
(zero vector) = (zero function)

i.e. f(x) = 0, ∀x ∈ [0, 1] ⊛

Question. V = {all positive R} x+y = xy

c·x = xc
, is V a v.s. over R

Answer. YES

1◦ (A1) (x+ y) + z = x+ (y + z)

2◦ (A2) (x+ y) = xy = yx = (y + x)

3◦ (A3) zero vector: x+ 1 = x

4◦ (A4) x + 1

x
= zero vector = 1

5◦ (M3) λ(x+ y) = (x+ y)λ = (xy)λ = xλyλ = (λx)(λy) = λx+ λy

6◦ (M4) (λ+ µ) · x = x(λ+µ) = xλ · xµ = λx · µx = λx+ µx

All conditions apply. ⊛
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2.1.2 subspace

Definition 2.1.3 (subspace). A subspace W of a vector space (V,+, ·) over F is a nonempty subset
of V 3 (W,+, ·) itself is a vector space over F . W is a subspace of V over F if and only if W is
closed under addition and scalar multiplication.

Question. Does the zero vector belong to subspace?

Answer. YES
W = {zero vector} is the smallest possible vector space. ⊛

Remark. If W1 and W2 are subspaces of V over F . Then W1 ∩W2 6=∅

Note. If W is a subspace of V /F , then we use notation W ≤ V .

Question. V = R2/R (xy-plane), What are the subspace of V ?

Answer. Here are all subspace of V

(i) origin (one point)

(ii) R2/R ≤ V

(iii) all lines through origin

(iv) 2nd quadant (no zero)

There are much more example. ⊛

Question. V = Mn×n(R)/R

S = {n× nsymmetric matrix}

U = {n× nupper triangular matrix}

L = {n× nlower triangular matrix}

Answer. YES, YES, YES ⊛

Theorem 2.1.1 (). Let V be a vector space over F . A nonempty subset W of V is a subspace of
V , if and only if for each pair x, y ∈W and α ∈ F :

1◦ The zero vector ∈W .

2◦ αx+ y ∈W

CHAPTER 2. VECTOR SPACES AND LINEAR EQUATION 27



Lecture 5

2.1.3 Column Space of A

Example.
Am×n xn×1 = bm×1

The first concern is to find all attainable r.h.s. vector b. For example:1 4

2 5

3 6

(u
v

)
=

b1

b2

b3

 = u

1

2

3

+ v

4

5

6



Theorem 2.1.2. The system is solvable if and only if the vector b can be expressed as a combination
of columns of A

Note. The columns of Am×n are vectors in Rm, the rows of Am×n are vectors in Rn.

Example. Let C(A) = {all combinations of columns of A}. Then, C(A) is a subspace of Rm/R.

Proof. If b and b′ ∈ C(A), ∃ x, x′ 3 Ax = b & Ax′ = b′

∀α ∈ R, A(αx+ x′) = A(αx) +A(x′) = Aαx+Ax′ = αb+ b′ ∈ C(A)

=⇒ C(A) ≤ Rm/R ■

Definition 2.1.4. C(A) is called the column space of A. Thus if b ∈ C(A), then Ax = b is solvable.

• Am×n = 0 −→ C(A) = 0m×1

• Am×n = Im −→ C(A) = Rm

Lecture 5
30 Sep. 13:202.1.4 Nullspace of A

Definition 2.1.5. Let N (A) = {x ∈ Rn | Ax = 0}, then N (A) ≤ Rn/R. Then N (A) is called the
null space of A.

Proof. We proof it with the Theorem 2.1.1

• zero vector is in the N (A)

• x, x′ ∈ N (A) ⇒ Ax = 0, Ax′ = 0

A(x+ x′) = Ax+Ax′ = 0 + 0 = 0 ⇒ x+ x′ ∈ N (A)

A(αx) = αAx = α · 0 = 0 ⇒ αx ∈ N (A), ∀α ∈ R ∴ N (A) ≤ Rn/R

■

Note. The system Ax = 0 is called a homogeneous equation. (齊次)
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Remark. The solution set of Ax = b is NOT a subspace of Rn/R

x, x′ −→ Ax = b, Ax′ = b

A(x+ x′) = Ax+Ax′ = 2b 6= b

Example. 1 4

2 5

3 6

(u
v

)
=

0

0

0

 =⇒ N (A) =

{(
0

0

)}

Example. 1 4 5

2 5 7

3 6 9


u

v

w

 =

0

0

0

 =⇒ N (A) =


 t

t

−t

 , t ∈ (−∞,∞)



C(A) = {all combinations of columns of A}

= column space of A ≤ Rm/R

N (A) = {x ∈ Rn | Ax = 0}

= null space of A ≤ Rn/R

2.2 The Solution of m Equations in n Unknows
For ax = b, a, b, x ∈ R

(i) if a 6= 0 ⇒ x =
b

a
, unique

(ii) if a = 0, b = 0 ⇒ infinitely many solutions.

(iii) if a = 0, b = 0 ⇒ no x exists.

Now, consider Ax = b, if A is a square, then (i), (ii), (iii) may occur.

(i) A−1 exists −→ x = A−1b, unique

(ii) A is singular (undetermined case)

(iii) inconsistent case.

With a rectangular matrix A, x = A−1b will never happen!
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Definition. Here is the definition of two similar jargon.

Definition 2.2.1 (row echelon matrix). An m× n matrix R is called a row echelon matrix if

(i) the nonzero rows come first and the pivots are the first nonzero etries in those rows.

(ii) below each pivot is a column of zeros

(iii) each pivot lies to the right of the pivot in the row above.

e.g. ⊛ ⊛ ⊛ ⊛ ⊛
0 ⊛ ⊛ ⊛ 0

0 0 0 ⊛ ⊛



Definition 2.2.2 (row-reduced echelon matrix). An m × n matrix R is called a row-reduced
echelon matrix if

(i) the nonzero rows come first and the pivots are the first nonzero etries in those rows;
pivots are normalized to be 1.

(ii) Above & Below each pivot is a column of zeros

(iii) each pivot lies to the right of the pivot in the row above.

e.g.  1 0 ⊛ 0 ⊛
0 1 ⊛ 0 ⊛
0 0 0 1 ⊛



Theorem 2.2.1. To any m × n matrix A, there exists a permutation matrix P , a lower triangular
matrix L with unit diagnal and an m× n echelon matrix U 3 PA = LU

OR
Every m× n matrix A is row equivalent to a row echelon matrix.
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• Case 1. Homogeneous Case. bm×1 = 0

Ax = 0

We call the component of x , which correspond to columns with pivots the basic variables; and
these correspond to columns with pivots the free variables.

 1 3 3 2

0 0 3 1

0 0 0 0



u

v

w

y

 =

0

0

0

 ,

basic variables: u,w

free variables: v, y

The basic variables are then expressed in terms of free variables.3w + y = 0

u+ 3v + 3w + 2y = 0
=⇒

w = − 1
3y

u = −3v − y

x =


u

v

w

y

 =


−3v − y

v

− 1
3y

y

 = v


−3
1

0

0

+ y


−1
0

− 1
3

1



–


−3
1

0

0

 is obtain from x by setting

v = 1

y = 0

–


1

0

− 1
3

0

 is obtain from x by setting

v = 0

y = 1

Theorem 2.2.2. If a homogeneous system Am×nx = 0 has more
n

unknows than
m

equations (m
< n), it has a nontrivial solution.

(Am×n) −→ (Am×n)

at most m pivot, at most m basic variables, at least (n−m) free variables.

Note. The nullspace is a subspace of the same dimension as the number of free variables.
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• Case 2. Inhomogeneous Case: b 6= 0

Ax = b → Ux = c where c = L−1b

 1 3 3 2

2 6 9 5

−1 −3 3 0



x1

x2

x3

x4

 =

b1

b2

b3



=⇒

 1 3 3 2

0 0 3 1

0 0 0 0



u

v

w

y

 =

 b1

b2 − 2b1

b3 − 2b2 + 5b1

 −→ b3 − 2b2 + 5b1 = 0

We know that Ax = b is solvable ⇒ b ∈ C(A)

– 1 & 3: basic variables

– C(A) = the set of combinations of

 1

2

−1

 &

3

9

3


, which is also


b1

b2

b3


∣∣∣∣∣∣∣ b3 − 2b2 + 5b1 = 0

⊥
 5

−2
1


Example.

b =

1

5

5


 1 3 3 2

0 0 3 1

0 0 0 0



u

v

w

y

 =

1

3

0

 =⇒

w = 1− 1
3y

u = −2− 3v − y

x =


u

v

w

y

 =


−2− 3v − y

v

1− 1
3y

y

 =


−2
0

1

0


shift

+ v


−3
1

0

0

+ y


−1
0

− 1
3

1


solution to Ax=0 (nullspace)

Shift: particular solution to Ax = b (set all free variables to be zero)

xgeneral = xparticular + xhomogeneous; xg = xp = xh
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Generally, the general solution is fills a two-dimensiona; surface (but NOT a subspace since it doesn’t
contain the zero vector (origin))

It is paralled to the Nullspace of A

nullspace of A
xh

xp

(Axp = b)
line of solutions of Ax = b

xg = xp + xh (Axg = b)

O

2.2.1 Steps to oobtain the solution to Ax = b

(i) Reduce Ax = b to Ux = c to determine basic/free variables.

(ii) Set all free variables to zero to find particular solution, xp

(iii) set RHS = 0. Give each free variables 1 others 0, in terms, find the hoomogeneous sloution, xh

=⇒ xg = xp + xh

Definition 2.2.3 (rank). Am×n if there are r pivots, there are r basic variables and n − r free
variables. The number of pivots, r, is called the rank of the matrix.

Theorem 2.2.3. Suppose elimination reduce Am×x = b to Ux = c and there are r pivots and the
last (m− r) rows of U are zero. Then there is a solution only if last (m− r) elements of c are zeros.

• If r = m, there’s always a solution. The general solution is the sum of particular solution and
a homogeneous solution.

• If r = n, there are No free variables and the null space contains x = 0 only. The number r is
called the rank of A.

Two extreme case: Am×nx = b

(1) If r = n → No free variables → N (A) = {x ∈ Rn | Ax = 0} = {0}

(2) If r = m → No zero rows in U → C(A) = Rm ⇒ ∃ solution for all b

2.3 Linear Independence, Basis and Dimension
In the elimination process, we refer to the number, r, of pivots as the rank of A. This definition is purely
computational rather than mathematical. We shall give a formal definition later.
Now we shall disscuss the following four ideas:

(i) linear independence or dependence

(ii) spanning a subspace

(iii) basis for a subspace

(iv) dimension of a subspace
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Definition 2.3.1. Let V be a vector space over F . A nonempty subset S of V is said to ve
linearly dependent if there exist distinct vectors v1, v2, · · · , vn in S and scalar α1, α2, · · · , αn in F ,

not all of which are zero 3
α1v1 + α1v1 + · · ·+ αnvn = 0

A set which is not linearly dependent is called linearly independent. If S = {v1, v2, · · · , vn} then
we say that v1, v2, · · · , vn are linearly dependent/independent.

Lecture 6
14 Oct. 13:20Remark (1). To show that v1, · · · , vn are linearly independent. We vaerify if

c1v1 + c2v2 + · · ·+ cnvn = 0 for some ci ∈ F

then ci must be zero for all i.

Example. In R2, if v1, v2 are not colinear(共線) then they are linearly independent.

v1( 6= 0) and v2( 6= 0) are linearly dependent ⇐⇒ v1, v2 are on the same line

Any 3 vectors in R2 are linearly dependent.

Remark (2). If v1 = v2, then the set {v1, · · · vn} is linearly dependent.

αv1 + (−α)v2 = 0

Remark (3). Any set which contain a linear dependent subset is linearly dependent.

Remark (4). Any subset of a linearly independent set is linearly independent.

Remark (5). Any set which contain 0 vector is linearly dependent.

Example.

A =


1 2 1 −1
3 2 −3 0

−4 −4 2 1

−2
v1

0
v2

−4
v3

0
v4


The columns of A are linearly dependent.

c1v1 + c2v2 + c3v3 + c4v4 = 0

(v1 v2 v3 v4)


c1

c2

c3

c4

 = 0 =⇒ 4v1 + (−3)v2 + 2v3 + 0v4 = 0
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Example.

A =


1 0 0 0

0 1 0 0

0 0 1 0

−1 −1 −1 1


The columns of A are linearly independent

Note. We showed that the nullspace of A is {0} only. That is exactly the same as saying the
columns of A are linearly independent.

Example.

U =

 1 3 3 2

0 0 3 1

0 0 0 0



Proposition 2.3.1 (2F). The r nonzero rows of echelon matrix U are linearly independent, and so
are r columns that contain pivots.

Example. In Rn, e1, e2, · · · , en are linearly independent.

To summarize: To check any set of vectors v1, v2, · · · , vn(∈ Rn) are linearly independent.
Let A = (v1|v2| · · · |vn)m×n, then solve Axn×1 = 0.

1◦ if ∃ solution x 6= 0, then vi’s are linearly dependent.

2◦ if there are no free variables (i.e. rank(A) = n), nullspace = {0} then vi’s are linearly independent.

3◦ if rank(A) < n, then vi’s are linearly dependent.

4◦ special case: if vi ∈ R⋗ and n > m, then vi’s are linearly dependent.

Proposition 2.3.2. A set of n vectors in Rm must be linearly dependent if n > m .
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2.3.1 Spanning a Subspace

Definition 2.3.2 (2H). Let S be a subset vectors in V /F .
The subspace spanned by S is defined to be the intersection W of all subspaces of V which contain
S.
When S is finite, S = {v1, · · · , vn}, we call W the subspace spanned by v1, · · · , vn and denoted as
W = 〈v1, · · · , vn〉 or W = span(S) = 〈S〉.

Theorem 2.3.1. [The subspace spanned by a nonempty subset S] of a vector space V is [the set T

of all linear combinations of vectors in S].

Proof. We need to show W = T .

Claim. W = T if and only if W ⊆ T and T ⊆W .

• Let W be the subspace spanned by S, S ⊆W (S 不一定有包含 0 vector 所以不能用 ≤).
So every linear combination of vectors in S

T
is in W . =⇒ T ⊆W .

(∵ W is a subspace which is a vector space)

• on the other hand, T is a subspace containing S.
(∵ x, y ∈ T, α ∈ F ⇒ αx+ y ∈ T )

So, W ⊆ T by definition ⇒W = T .
(Intersection of all subspaces containin S) ■

Example. C(A) = space spanned by columns of A.

Example. w1 = (1, 0, 0), w2 = (0, 1, 0), w3 = (0, 0, 1), span a space R3.
w1 = (1, 0, 0), w2 = (0, 1, 0), w3 = (−3, 0, 0), span a plane R2.

Note. Spanning involves the columns space, independence involves the null space.

2.3.2 Basis

Definition 2.3.3 (2I). A basis for a vector space is a set of vectors that satisfies

(i) it is linearly independent AND

(ii) it span the vector space

If the basis of V is finite, then V is finite-dimensional (f-dim).

Remark (1). There’s one and only one way to write every v ∈ V as a linear combination of the basis
elements.
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Remark (2). In Rn,

ei =



0
...
1
...
0


n×1

↑
ith

↓

then {e1,
..., en} is a basis for Rn. The basis is called the standard basis.

∀x = (x1, · · · , xn) ∈ Rn, x =

n∑
i=1

xiei

The standard basis is not the only basis for Rn. In fact, there are infinitely many bases for Rn. For
any nonsingular matrix An×n, the columns of A are the basis for Rn.

Example.

A =

 1 3 3 2

2 6 9 5

−1 −3 3 0


3×4

−→ U =

 1 3 3 2

0 0 3 1

0 0 0 0


3×4

The columns of U that contain pivots are a basis for C(U).

Note that C(U) is generate by

1

0

0

 and

1

1

0

, which is a xy-plane within R3.

Remark. C(U) is NOT same as C(A).

Theorem 2.3.2 (2J). Any two bases for V contain the same number of vectors. This number is
called the dimension of V .
Proof. Suppose v1, . . . , vm and w1, . . . , wn are bases for V , and suppose m < n.
For j = 1, . . . , n,

wj = a1jv1 + · · ·+ amjvm for some aij ∈ F.

Let

w = [w1, . . . , wn] = V A = [v1, . . . , vm]


a11 · · · a1n

a21 · · · a2n
...

. . .
...

am1 · · · amn

 .

The matrix A is m× n with m < n. By Theorem 2C, ∃ nontrivial C such that AC = 0.

V AC = WC = 0.

Hence the columns of W are linearly dependent. But the columns of W are basis elements, contra-
diction ⇒ m 6< n.
Similarly, we can show that n 6< m, so we conclude m = n. ■
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Theorem 2.3.3 (2L). Any linearly independent set in a finite-dimensional vector space V can be
extended to a basis. Any spanning set of V can be reduced to a basis.

Proof. Let v1, . . . , vk be linearly independent over F . Then 〈v1, . . . , vk〉 ≤ V .
If 〈v1, . . . , vk〉 = V , then 〈v1, . . . , vk〉 is a basis of V . Otherwise, ∃x ∈ V such that x /∈ 〈v1, . . . , vk〉.
Then x, v1, . . . , vk are linearly independent. If not, ∃ c 6= 0, and ∃α1, . . . , αk, not all zero, such that

cx+ α1v1 + α2v2 + · · ·+ αkvk = 0.

⇒ x = c−1α1v1 + c−1α2v2 + · · ·+ c−1αkvk.

⇒ x ∈ 〈v1, . . . , vk〉, contradiction.

Then repeat the process, i.e. is 〈x, v1, . . . , vk〉 = V ? Since V is finite-dimensional, the process will
terminate after finite steps.
The 2nd half of the theorem can be proved similarly (exercise). ■

2.4 The Four Fundamental Subspaces
Usually there are two ways to describe a subspace

(i) a set of vectors that span the space.
(e.g. the column space of Am×n, C(A))

(ii) a list of constraints that imposed on a subspace.
(e.g. the null space of Am×n, N (A) = {x | Ax = 0})

Here we will discuss four fundamental subspaces associated to Am×n

(1) the column space of A denoted by C(A)

(2) the null space of A denoted by N (A)

(3) the row space of A the columns spaces of AT , denoted by C(AT )

(4) the left null space of A denoted by N (AT ), i.e. {y | AT y = 0}

• If Am×n, then C(A),N (AT ) ≤ Rm and N (A), C(AT ) ≤ Rn.

2.4.1 Row space C(AT )

The row space of A (the subspace spanned by the rows of A), C(AT ). For an echelon matrix, its r

nonzero rows are independent and its row space is r-dimensional.

Proposition 2.4.1 (2M). The row space of A has the same dimension r as the row space of echelon
form U of A, and they have the same basis.

C(AT ) = C(UT )

But in general, C(A) 6= C(U).
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Lecture 7
21 Oct. 13:202.4.2 Nullspace N (A)

The nullspace of Am×n, {x | Ax = 0} = {x | Ux = 0}

∴ The nullspace of A is the same as the nullspace of U

Proposition 2.4.2 (2N). The nullspace N (A) is of dimension n− r

A basis of N (A) can be constructed by reducing to Ux = 0 which has n − r free variables corre-
sponding to the columns if U that do not contain pivots. Let each free variable 1, in turn, and
others 0, and solve Ux = 0. The n− r vectors produced in this manner will be a basis of N (A).

dim(N (A)) = n− r

The N (A) is also called the kernel of A , ker(A), and its dimension is called the nullity of A .

ker(A) = N (A)

2.4.3 Column space C(A)

The R in R(A) stands for “range” which is consistent with the usual idea if range of f

Let f(x) = Am×nxn×1, the

• the domain of f is Rn

• the range of f is {b ∈ Rm | Ax = b} = C(A) = R(A)

• the kernel of f is {x ∈ Rn | Ax = f(x) = 0} = N (A) = ker(A)

If U is the echelon form of A, C(A) 6= C(U), but they have the same dimension. For U , the columns with
pivots form a basis of C(U). Then, the corresponding columns in A form a basis of C(A). Since the two
systems Ax = 0, Ux = 0 are equivalent and have the same solutions. A nontrivial solution x means a
linear combination of columns of U , hence the same linear combination of columns of A.

So, if the set of columns of U is independent, then so are the corresponding columns of A and vice versa.

To find a basis of C(A), we pick those columns of A, which correspond to the columns of U with pivots.

Proposition 2.4.3 (2O). The dimension of the column space = rank r, which also equals the dimen-
sion of the row space.

∴ # of independent columns = # of independent rows = r

or more formally,
rank(A) = r = row rank = column rank
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2.4.4 Left nullspace N (AT )

AT

n×m
y

m×1
= 0

n×1
= ( yT

1×m
A

m×n
)T

(# of basic variables) + (# of free variables) = (# of variables) = n

dim(C(A)) + dim(N (A)) = # of columns of A

For AT , which has m columns, the column space of AT is the row space of A which has dimension
rank(A). So,

dim(N (AT )) = m− rank(A)

i.e.
dim(C(AT )) + dim(N (AT )) = # of columns of AT

Proposition 2.4.4 (2P). The left nullspace N (AT ) is of dimension m− r

The left nullspace contain the coefficients that make the rows of A combined to a zero vector (linear
dependent).

To find y 3 yTA = 0

Suppose that PA = LU −→ L−1P
m×m

A
m×n

= U
m×n

The last m− r rows of L−1P must be a basis for the left nullspace. ( ∴ the last m− r rows of L−1P

are independent and dim(N (AT )) is m− r → it is a basis of N (AT ))

Theorem 2.4.1 (Fundamental Theorem of Linear Algebra). Let A be n arbitrary m× n matrix, then

dim(C(A)) = dim(C(AT )) = rank(A)

dim(N (A)) = n− rank(A); dim(N (AT )) = m− rank(A)

Figure 2.1: Fundamental Theorem of Linear Algebra
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Example. Find out the basis for the four fundamental subspaces of the matrix

A =

1 0 1 0

2 3 4 1

4 3 6 1

 −→ U =

 1 0 1 0

0 1 2/3 1/3

0 0 0 0

 r = 2

1◦ C(A)

B =


1

2

4

 ,

0

3

3


 dim(C(A)) = r = 2

2◦ N (A)

Ax = 0 −→ Ux = 0 −→ U


x1

x2

x3

x4

 =

0

0

0


x1 + x3 = 0

x2 +
2
3x3 +

1
3x4 = 0

(a) x3 = 1, x4 = 0 −→


−1
−2/3
1

0

 = v2

(b) x3 = 0, x4 = 1 −→


0

−1/3
0

1

 = v2

Hence, B = N (A) is {v1, v2} and

dim(N (A)) = n− r = 4− 2 = 2

3◦ C(AT )

U =

1 0 1 0

0 1 2/3 1/3

0 0 0 0

 =

S1

S2

0

 −→ B = {ST
1 , S

T
2 }, dim(C(AT )) = r = 2

4◦ N (AT ) −→ N (B)

B =


1 2 4

0 3 3

1 4 6

0 1 1

 = AT −→


1 2 4

0 1 1

0 0 0

0 0 0


y1

y2

y3

 =


0

0

0

0

 −→

y1 + 2y3 = 0

y2 + y3 = 0

z = 1 −→

−2−1
1

 ∴ B =


−2−1

1


 , dim(N (AT )) = m− r = 3− 2 = 1

Check orthogonality
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Proposition 2.4.5 (2Q). We can find the existence and uniqueness of solution of Ax = b.

• Existence of inverse:
The system Ax = b has at least one solution x for each b iff the columns span Rm (r = m).
In this case,

∃ n×m “right” inverse C 3 AC = I

This is possible only if m ≤ n.

• Uniqueness of inverse:
The system Ax = b has at most one solution x for each b iff the columns are independent
(r = n). In this case,

∃ n×m “left” inverse B 3 BA = I

This is possible only if m ≥ n.

Proof. We separetely prove the two parts.

• Existence:

Ax = b has a solution for each b ⇔ b ∈ C(A), ∀b ∈ Rm ⇒ C(A) = Rm

Let e1, e2, · · · , em be the standard basis of Rm.

Then ∃ x1, x2, · · · , xm 3 Axi = ei, ∀i = 1, 2, · · · ,m

Let C = (x1 | x2 | · · · | xm), then AC = A(x1 | x2 | · · · | xm) = (e1 | e2 | · · · | em) = Im.

• Uniqueness:
Ax = b has at most one solution for each b ∈ Rm

⇔ ∀b ∈ Rm, if b can be represented as linear combination of columns of A, then it is unique

Hence, proof is complete. ■

Example.

A =

(
4 0 0

0 5 0

)
2×3

m = 2, n = 3, r = 2 −→ ∃ right inverse C 3 AC = I

1◦

AC =

(
4 0 0

0 5 0

)1/4 0

0 1/5

c31 c32

 = I2 ⇒ C is not unique

2◦ 1/4 0

0 1/5

c31 c32

(4 0 0

0 5 0

)
=

1 0 0

0 1 0

0 0 1

 impossible since LHS is 3× 2

3◦

A2 =

4 0

0 5

0 0


3×2

m = 3, n = 2, r = 2 −→ Ax = b

4 0

0 5

0 0

(x1

x2

)
=

b1

b2

b3


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Note. The following statements about a square matrix An×n are equivalent:

(1) A is nonsingular (invertible)

(2) The columns of A span Rn, so Ax = b has only one solution ∀b ∈ Rn

(3) The columns of A are independent, so Ax = 0 has only one trivial solution x = 0

(4) The rows of A span Rn

(5) The rows of A are independent

(6) Elimination can be completed: PA = LDU with all di 6=0

(7) ∃ A−1 3 AA−1 = A−1A = In

(8) Determinant of A det(A) 6=0

(9) Zero is NOT an eigenvalue of A

(10) ATA is positive definite (正定)

2.5 Graph and Network
skip

2.6 Linear Transformation
We have seen that a matrix move subspaces around. For example, A maps N (A) to the zero vector and
move all vectors into its column space C(A). Let A be an n× n matrix and x ∈ Rn, so A transforms x

into Ax ∈ C(A).

2.6.1 Notation of Linear Transformation

Example. Here are some examples of linear transformations:

1◦

A =

(
c 0

0 c

)
A

(
x1

x2

)
=

(
cx1

cx2

)
= c

(
x1

x2

)
(scaling by c)

2◦

A =

(
0 −1
1 0

)
A

(
x1

x2

)
=

(
−x2

x1

)
(rotation by 90◦)

3◦

A =

(
0 1

1 0

)
A

(
x1

x2

)
=

(
x2

x1

)
(reflection about x1 = x2)

4◦

A =

(
1 0

0 0

)
A

(
x1

x2

)
=

(
x1

0

)
(projection onto x1-axis)
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Lecture 8
28 Oct. 13:20Definition 2.6.1 (2T). Let V,W be vector spaces over a field F. A linear transform from V to W is

a function T : V →W such that preserves the operations on V and W , i.e.T (u + v) = T (u) + T (v), ∀ u, v ∈ V ;

T (cu) = cT (u), ∀ u ∈ V, c ∈ F.

Example.
T : R3 → R3

T : (x1, x2, x3) 7→ (x2, x3, x1)

T is a linear transform.

Example.
A =

d

dt
: Pn(R)→ Pn−1(R)

p(t) ∈ Pn(R), p(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n

See the attributes below:

AP =
d

dt
(a0 + a1t+ a2t

2 + · · ·+ ant
n) = a1 + 2a2t+ · · ·+ nant

n−1

The nullspace of A is all constant polynomials.

C(AP ) = Pn−1(R)

the basis is {1, t, t2, . . . , tn−1} and rank(C(A)) = n.

nullity(A) + rank(A) = 1 + n = dim(Pn(R)).

Example.

A =

∫ t

0

: Pn(R)→ Pn+1(R)

See the attributes below:

AP =

∫ t

0

(a0 + a1t+ a2t
2 + · · ·+ ant

n) dt = a0t+
a1t

2

2
+

a2t
3

3
+ · · ·+ ant

n+1

n+ 1
+ C

The nullspace of A is all constant polynomials.

N (AP ) = {0}

The range of A
C(AP ) = Pn+1(R)− {constant}/{0}

Example.
T : R3 → R

T : (x1, x2, x3) 7→ 2x1 + 3x2 − x3, xi ∈ R

T is a linear transform.
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Example.
T : R3 → R

T : (x1, x2, x3) 7→ 2x2
1 + 3x2 − x3, xi ∈ R

T is NOT a linear transform.
∵ T (x+ y) 6= T (x) + T (y)

Theorem 2.6.1. Let T : V →W be a linear transform, where V,W are vector spaces over a field F.

(i) If M is a subspace of V , then

T (M) = {x ∈W | ∃ m ∈M, such that T (m) = x}

is a subspace of W .

(ii) If N is a subspace of W , then

T−1(N) = {v ∈ V | T (v) ∈ N}

is a subspace of V .

Proof. Here is the proof:

(i) Let M ≤ V , y1, y2 ∈ T (M) ⊆W , and α ∈ F.

y1, y2 ∈ T (M)⇒ ∃x1, x2 ∈M s.t. T (x1) = y1, T (x2) = y2

Then
T (αx1 + x2) = αT (x1) + T (x2)

since T is a linear transformation.
Also

αx1 + x2 ∈M

since M is a subspace of V .
Therefore

αy1 + y2 = αT (x1) + T (x2) = T (αx1 + x2) ∈ T (M)

so T (M) is a subspace of W .

(ii) Let x1, x2 ∈ T−1(N) and α ∈ F.

T (αx1 + x2) = αT (x1) + T (x2) ∈ N

since N ≤W and T (x1), T (x2) ∈ N .
Therefore

αx1 + x2 ∈ T−1(N)

and T−1(N) is a subspace of V .

■
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Definition 2.6.2. T : V → W over a field F is a linear transform. Then T−1(OW ) is called the
nullspace (kernel) of T , where OW is the zero vector in W . T (V ) is called the range (image) of T .

dim(T−1(OW )) = nullity(T )

dim(T (V )) = rank(T )

2.6.2 Matrix Representation of Linear Transformations

Question. What is the transformation taken A : R2 → R3

x1 =

(
1

0

)
∈R2

→

2

3

4


∈R3

, x2 =

(
0

1

)
∈R2

→

4

6

8


∈R3

Answer.

A =

2 4

3 6

4 8


3×2

= (T )
{e1,e2,e3}
{e1,e2}

⊛

Example.
T : P3(R)→ P2(R), i.e. T (f) =

d

dt
(f)

The ordered basis of two vector spaces areB1 = B(P3(R)) : {1, t, t2, t3}

B2 = B(P2(R)) : {1, t, t2}

Then we have

(
T
)B1

B2

=

1

t

t2


1
0

t
1

t2

0
t3

0

0 0 2 0

0 0 0 3


3×4

e.g.
(
T
)

1

1

1

1

 =

1

2

3


3×1

Example.
T : P3(R)→ P3(R), i.e. T (f) =

d

dt
(f)

We have to handle the t3 term, which means

(
T
)B1

B1

=
(
T
)
B1

=

1

t

t2

t3


1
0

t
1

t2

0
t3

0

0 0 2 0

0 0 0 3

0 0 0 0


4×4

, this is called a 〈differentiation matrix〉
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Example. ∫ t

0

: P3(R)→ P4(R)

The ordered basis of two vector spaces areB1 = B(P3(R)) : {1, t, t2, t3}, dim(P3(R)) = 4

B2 = B(P4(R)) : {1, t, t2, t3, t4}, dim(P4(R)) = 5

hence we have

(
T
)B1

B2

=

1

t

t2

t3

t4



1
0

t
1

t2

0
t3

0

0 0 1
2 0

0 0 0 1
3

0 0 0 0

0 0 0 1
4


5×4

which is called an 〈integration matrix〉

and we also have
C(T ) = span{t, t2, t3, t4}, rank(T ) = 4

N (T ) = {0}, nullity(T ) = 0

Example.
P2(R)

∫
t−→ P3(R)

d
dt−→ P2(R)

(
d
dt

∫ t

0

)
=
(

d
dt

)
3×4

(∫ t

0

)
4×3

=
(
I
)
3×3

Diff is the left inverse of Int

2.6.3 Rotation Q, Projection P , Reflection R

We introduce three important linear transformations in R2:

Q =

(
cos θ − sin θ

sin θ cos θ

)
, P =

(
1 0

0 0

)
, R =

(
1 0

0 −1

)

1◦ Rotation: Q rotates vectors by an angle θ.

(
Q
)
=

(
cos θ − sin θ

sin θ cos θ

)
2×2

e1 =

(
1

0

)

e2 =

(
0

1

)
Q

e1

e2

Q(e1)
Q(e2)

θ

Figure 2.2: Rotation in R2
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Q

(
1

0

)
=

(
cos θ
sin θ

)
, Q

(
0

1

)
=

(
− sin θ

cos θ

)
• Q−θ ·Qθ = 1R2

• Qθ ·Qθ = Q2θ

• Qθ ·Qϕ = Qθ+ϕ

2◦ Projection: P projects vectors onto the θ-line.

θ-line

e1

P (e1)

P (e1) =

(
cos2 θ

cos θ sin θ

)

θ-line
e2

P (e2) P (e2) =

(
sin θ cos θ

sin2 θ

)

Figure 2.3: Projection onto a line at angle θ

P =

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
Here are some properties of projection:

• P 2 = P

• Symmetric: PT = P

• P−1 does not exist.

1◦

P

(
α

(
cos θ
sin θ

))
= αP

(
cos θ
sin θ

)

= α

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)(
cos θ
sin θ

)
= α

(
cos3 θ + cos θ sin2 θ

sin θ cos2 θ + sin3 θ

)
= α

(
cos θ
sin θ

)
2◦

P

(
α

(
− sin θ

cos θ

))
= αP

(
− sin θ

cos θ

)

= α

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)(
− sin θ

cos θ

)
= α

(
− sin θ cos2 θ + cos θ sin θ

− sin2 θ cos θ + sin3 θ

)
= α

(
0

0

)
Thus,

α

(
− sin θ

cos θ

)
is in the nullspace of P.
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3◦ Reflection: R reflects vectors across the θ-line.

θ-line

e1

H(e1)

θ

H(e1) = cos θ
(

cos θ
sin θ

)
+ cos θ

(
cos θ
sin θ

)
−

(
1

0

)
=

(
2 cos2 θ − 1

2 sin θ cos θ

)

θ-line
e2

H(e2)

θ

H(e2) = sin θ

(
cos θ
sin θ

)
+ sin θ

(
cos θ
sin θ

)
−

(
0

1

)
=

(
2 sin θ cos θ
2 sin2 θ − 1

)

Figure 2.4: Reflection across a line at angle θ

H =

(
2 cos2 θ − 1 2 sin θ cos θ
2 sin θ cos θ 2 sin2 θ − 1

)

Here are some properties of reflection:

• H2 = I

• H−1 = H

• H = 2P − I (Hx+ x = 2Px)

Note. If first basis vector is on the θ-line, and the second basis vector is perpendicular to the θ-line,
then

P ∗ =

(
1 0

0 0

)
, H∗ =

(
1 0

0 −1

)
= 2P ∗ − I, Q∗ =

(
cos θ − sin θ

sin θ cos θ

)
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Orthogonality

3.1 Perpendicular Vectors and Orthogonal Subspaces
There are three important concepts in this section:

(i) The length of vector

(ii) The test for perpendicularity

(iii) How to create perpendicular vectors form linearly independent vectors

Now we start to discuss:

(i) The length of vector:
The length (or norm) of a vector, in Rn, that satisfies the Pythagorean theorem is defined as:

Definition 3.1.1. Let x ∈ Rn be

x = (x1, x2, . . . , xn) = x1e1 + x2e2 + · · ·+ xnen ∈ Rn

then

‖x‖2 =

n∑
i=1

x2
i = xT x

(ii) The test for perpendicularity:

Definition 3.1.2. Given x, y ∈ Rn, then if x ⊥ y, then by Pythagorean theorem, we have

‖x‖2 + ‖y‖2 = ‖x− y‖2

Then we can deduce that

x2
1 + x2

2 + · · ·+ x2
n + y21 + y22 + · · ·+ y2n = (x1 − y1)

2 + (x2 − y2)
2 + · · ·+ (xn − yn)

2

then we have
xT y = 0
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Definition 3.1.3 (Inner Product). Let V be a vector space over a field F (R,C). An inner product
on V is a function that assigns to every ordered pair of vectors x and y in V , a scalar in F, denoted
as

〈x, y〉

∀ x, y, z ∈ V, c ∈ F, we have

(a) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉

(b) 〈c x, y〉 = c 〈x, y〉

(c) 〈y, x〉 = 〈x, y〉 (where a+ bi = a− bi complex conjugate)

(d) 〈x, x〉 > 0, if x 6= 0

Note (1). If F = R, (c) will reduce to 〈y, x〉 = 〈x, y〉.

Note (2). Inner product is linear in the first component.

Definition 3.1.4 (Standard Inner Product). Let V = Rn/R, defined

〈x, y〉 = xT y =

n∑
i=1

xiyi

This is called the standard inner product on Rn.

Proposition 3.1.1. If x, y ∈ Rn, then

• Let 〈x, y〉 = xT y be standard inner product.

• Let 〈x, y〉 = 0 if and only if x ⊥ y.

Example. If 〈, 〉 is any inner product on V , and r > 0, we define

〈x, y〉′ = r〈x, y〉

1◦ 〈x + y, z〉′ = r〈x + y, z〉 = r〈x, z〉+ r〈y, z〉 = 〈x, z〉′ + 〈y, z〉′

2◦ 〈cx, y〉′ = r〈cx, y〉 = c · r〈x, y〉 = c〈x, y〉′

Example. Let V = {f | f : real-valued continuous functions on [0, 1]} = C([0, 1]). For f, g ∈ V ,
define

〈f, g〉 =
∫ 1

0

f(t)g(t)dt

Example. Let V = Cn, Cn is a vector space over C. For x, y ∈ V , define

〈x, y〉 = xT y =

n∑
i=1

xiyi

〈y, x〉 = yTx = xTy = 〈x, y〉.

CHAPTER 3. ORTHOGONALITY 51



Lecture 9

Example. Let V = C, C is a vector space over C. If x, y ∈ C, x = a+ bi, y = c+ di, define

〈x, y〉 = (a+ bi)(c− di)

1◦ 〈y, x〉 = (c+ di)(a− bi) = (a+ bi)(c− di) = 〈x, y〉

2◦ 〈x, x〉 = (a+ bi)(a− bi) = a2 + b2 > 0 if x 6= 0

Lecture 9
4 Nov. 13:20Definition 3.1.5 (inner product space). An inner product space is a real or complex vector space

(i.e. a vector space over the field R or C) together with a specified inner product on that space.

Definition 3.1.6 (orthogonal). In an inner product space V , x is orthogonal to y if 〈x, y〉 = 0. A
set S of vectors in V is called orthogonal set if all pairs of distinct vectors in S are orthogonal.
An orthonormal set is an orthogonal set of unit vectors.

〈v, v〉 = ‖v‖2 = 1, ∀v ∈ S

Proposition 3.1.2. An orthogonal set of nonzero vectors is linearly independent.

Proof. Let v1, · · · , vn be nonzero distinct vectors in S, and c1, · · · , cn ∈ F

c1v1 + c2v2 + · · ·+ cnvn =

n∑
i=1

civi = y

〈y, vj〉 =

〈
n∑

i=1

civi, vj

〉
=

n∑
i=1

ci〈vi, vj〉 = cj〈vj , vj〉 = cj‖vj‖2

Then we have y = 0⇐⇒ cj = 0, ∀j

∴ {v1, v2, · · · , vn} is linearly independent.

■

Example. {e1, e2, · · · , en} is an orthonormal set (basis) for Rn

In R2,

1◦ {e1, e2}

2◦

{
1√
5

(
1

2

)
, 1√

5

(
2

1

)}

3◦

{(
cos θ
sin θ

)
,

(
− sin θ

cos θ

)}
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3.1.1 Orthogonal Subspaces

Definition 3.1.7 (3B). Let W1 and W2 be subspaces of an inner product space V . We say that W1

is orthogonal to W2 (W1 ⊥W2) if

〈w1,w2〉 = 0, ∀w1 ∈W1, ∀w2 ∈W2

Note. In R3, the xy-plane is NOT orthogonal to the yz-plane. Because vectors along the y-axis are
in both planes, and their inner product is not zero.

x

y

z

O

Figure 3.1: The xy-plane and the yz-plane in R3

Example. In R3, the subspace spanned by (1, 2, 3)T is orthogonal to the subspace spanned by
(1, 1,−1)T.

Example. In R3, the subspace spanned by (1, 2, 3)T is orthogonal to the subspace spanned by
{(1, 1,−1)T, (5,−4, 1)T}.

Theorem 3.1.1 (3C). Am×n The row space is orthogonal to the null space (in Rn), and the column
space is orthogonal to the left null space (in Rm).

Proof. This is the proof.

1◦ • v ∈ row space of A, then we have b = ATy for some y ∈ Rm.

• w ∈ null space of A, then we have Aw = 0.

vTw = (ATy)Tw = yT(Aw) = yT0 = 0

2◦ • b ∈ C(A) ⇒ Ax = b is solvable.

• y ∈ N (AT)⇒ ATy = 0.

bTy = (Ax)Ty = xT(ATy) = xT0 = 0

■
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Example.

A =

(
1 3 4

5 2 7

)
2×3

−→ U =

(
1 3 4

0 -13 −13

)
2×3

• C(A) = span

{(
1

5

)
,

(
3

2

)}
, rank = 2

• C(AT) = span


1

3

4

 ,

5

2

7


, rank = 2

• N (A) = span


 1

1

−1


, n− rank = 1

• N (AT) = span

{(
0

0

)}
, m− rank = 0

C(A) ⊥ N (AT) ∈ R2 C(AT) ⊥ N (A) ∈ R3

Note. The nullspace N (A) doesn’t contain "some" of vectors orthogonal to the row space. It contain
"every" such vector.

Proposition 3.1.3. Let V be an inner product space, and let W be a subspace of V . Then the set
is defined

U = {v ∈ V | 〈v,w〉 = 0, ∀w ∈W}

Then U is a subspace of V .

Definition 3.1.8. The subspace U is called the orthogonal complement of W in V , denoted by W⊥

(W -perp). By definition of nullspace N (A), we have

N (A) = (C(AT))⊥, or C(A) = (N (AT))⊥

Theorem 3.1.2 ((3D) Fundamental Theorem of Linear Algorithm). The nullspace
W

is the orthogonal

complement of the row space
V (W⊥)

in Rn

V
, and the left nullspace

W
is the orthogonal complement of the

column space
V (W⊥)

in Rm

V
.

Proposition 3.1.4 (3E). The equation Ax = b is solvable if and only if

bTy = 0, ∀y ∈ N (AT)

Note. Solvability of Ax = b:

• Direct approach: b must be a combination of the columns of A.

• Indirect approach: b must be orthogonal to every vector that is orthogonal to the columns of
A.
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3.1.2 The Matrix and the Subspaces

U and W can be orthogonal without being complements when their dimensions are too small. In R3

U 6= W⊥

U (axis)

W W = U⊥

U (plane)

W

Figure 3.2: Orthogonal but not complements

W = U⊥ ⇒ U = W⊥ or U⊥⊥ = U

When the space is split into orthogonal parts (i.e. V = U+W = U+U⊥), so every vector (x = xU+xU⊥).

Figure 3.3: Fundamental Theorem of Linear Algebra

Proposition 3.1.5 (3F). The mapping from row space to column space is actually invertible. Every
matrix Am×n transforms its row space to its column space. (On these r-dimensional subspaces, A
is invertible.)

Am×n : Rn

x

A−→ Rm

Ax=b
Ax = b

AT
n×m : Rm

b

AT

−−→ Rn

ATb=0
ATb

?
= x x = A−1b
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• AT moves the space correctly but NOT the individual vectors.

• When A−1 fails to exist, we can substitute. It’s called the pseudoinverse, denoted by A+.A+Ax = x, ∀x ∈ C(AT)

A+b = 0, ∀b ∈ N (AT)

3.2 Inner Product and Projections onto Lines

Inner product xTy =

= 0, if x ⊥ y

6= 0

Question. Practical applications?
Least squares solution to an overdetermined system. i.e. given a vector b not falling in the desired
space, we have to project to the subspace. Then we get the approximate solution.

subspace

v⃗

projsubspace(v⃗)

Figure 3.4: Projection onto a subspace (in R3)

Question. Practical applications?
A formula for the projection, we need the basis.

3.2.1 Inner Product and Schwarz Inequality

x

y

a(a1, a2)

b(b1, b2)

α

β
θ

sinα =
a2
‖a‖ , cosα =

a1
‖a‖ ,

sinβ =
b2
‖b‖ , cosβ =

b1
‖b‖ .

Figure 3.5: Angle between two vectors in R2

cos θ = cos(β − α) = cosβ cosα+ sinβ sinα =
a1b1 + a2b2
‖a‖‖b‖

=
aTb

‖a‖‖b‖
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Proposition 3.2.1 (3G). The cosine of the angle between any two vectors a, b ∈ Rn is

cos θ =
aTb

‖a‖‖b‖

If we consider the relationship between ‖a‖, ‖b‖ and ‖b− a‖, then we have

‖b− a‖2 = ‖a‖2 + ‖b‖2 − 2‖a‖‖b‖ cos θ (Law of Cosines)

Projection onto a Line:

(b− p) ⊥ a⇐⇒ (b− p)Ta = 0⇐⇒ (b− αa)Ta = 0

⇐⇒ bTa− αaTa = 0⇐⇒ α =
aTb

aTa

Proposition 3.2.2 (3H). The projection of b onto the line through 0&a is

p =
aTb

aTa
· a

Theorem 3.2.1 (3I Schwarz Inequality). For any two vectors in inner product space satisfy the
Cauchy-Schwarz inequality:

|aTb| ≤ ‖a‖‖b‖ or |〈a, b〉| ≤ ‖a‖‖b‖

with equality if and only if b = αa, for some α ∈ F.

Proof.

‖b− p‖2 = ‖b− aTb

aTa
a‖2 = bTb− 2 · (a

Tb)2

aTa
+

(
aTb

aTa

)2

aaT

=
(bTb)(aTa)− (aTb)2

aTa
≥ 0

⇒ |aTb| ≤ ‖a‖‖b‖

and the equality holds ⇐⇒ ‖b− p‖ = 0⇐⇒ b = p = αa. ■

Example. Project (1, 1, 1)→ (1, 2, 3)

p =
aTb

aTa
a =

6

14

1

2

3

 =

3/7

6/7

9/7


3.2.2 Projections of Rank One

Question. What is the matrix this linear transformation that maps b to p

p =
aTb

aTa
· a =

aaT

aTa
b

The projection matrix is P =
aaT

aTa
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Note. Here are some properties of P :

1◦ P is symmetric: PT = P

2◦ P 2 = P (idempotent)

Proof. Here are the proofs:

1◦ PT =

(
aaT

aTa

)T

=
(aT)TaT

aTa
=

aaT

aTa
= P

2◦ P 2 =

(
aaT

aTa

)(
aaT

aTa

)
=

aaTaaT

(aTa)2
=

a(aTa)aT

(aTa)2
=

aaT

aTa
= P

Proof complete. ■

• rank(P ) = 1, nullspace of P is the space orthogonal to a. i.e.

N (P ) ⊥ C(P )

which is not general. It is right here because C(P ) = C(PT) = span(a).

Remark (Scaling). Project b onto a, which can be scaled arbitrarily. i.e. project onto αa

p =
a′a′T

a′Ta′
=

(αa)(αa)T

(αa)T(αa)
=

α2aaT

α2aTa
=

aaT

aTa
= p (remains the same)

Lecture 10
18 Nov. 13:203.3 Projections and Least Squares Applications

a1x = b1

a2x = b2

a3x = b3

a1

a2

a3

x =

b1

b2

b3


E2 = (a1x− b1)

2 + (a2x− b2)
2 + (a3x− b3)

2

1◦ if b =

a1

a2

a3

x0 then E2 = 0

2◦ Or consider

dE2

dx
= 2[a1(a1x− b1) + a2(a2x− b2) + a3(a3x− b3)] = 0

⇒ x̄ =
a1b1 + a2b2 + a3b3

a21 + a22 + a23
=

aT b

aTa
α

Hence, we call the projection of b onto a as pab = x̄a = aT b
aT a

a, which is also calles the least squares solution .

aT (b− x̄a) = 0 = aT b− x̄aTa
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3.3.1 Least Squares Problem with Several Variables

Am×nxn×1 = bm×1 (m > n)

• If b ∈ Col(A), then the system is solvable.

• If the equations contain errors, then b might not belong to C(A)

A3×2 =

a11 a12

a21 a22

a31 a32



Col1 =

a11

a21

a31


Col2 =

a12

a22

a32



b⃗

p = Ax̄ = b′

Figure 3.6: Projection of b⃗ onto the span of the columns of A

• Ax = b has error, b /∈ C(A)

• Ax = b′ is solvable ⇒ b′ ∈ C(A) ⇔ ∃ x̄n×1 3 Ax̄ = p = b′

Note. To find x, we do it in three ways:

1◦ The vectors perpendicular to C(A) are in N (AT )

AT (b−Ax̄) = 0 ⇒ ATAx̄ = AT b

2◦ The error vector must be perpendicular to each column of A.
If A = [a1 a2 · · · an]

aT1 (b−Ax̄) = 0

aT2 (b−Ax̄) = 0
...

aTn (b−Ax̄) = 0

⇒ AT (b−Ax̄) = 0 ⇒ ATAx̄ = AT b (A′x′ = b′)

3◦ The third way is to differentiate the sum of squares.

E2 = ‖Ax− b‖2 = (Ax− b)T (Ax− b) ⇒ ATAx−AT b = 0 ⇒ ATAx̄ = AT b
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Proposition 3.3.1 (3L). The least-squares solution to an inconsistent system Ax = b of m equations
in n unknowns satisfies

ATAx̄ = AT b

The above equation is referred to the Normal Equation .

Note. The properties of ATA:

1◦ ATA is symmetric.

Proof. (ATA)T = AT (AT )T = ATA ■

2◦ The (i, j)th entry of ATA is the inner product of the ith and jth columns of A.

3◦ ATA has the same nullspace of A (i.e., N (ATA) = N (A)).

Proof. We follow the two directions:

• Ax = 0 ⇒ ATAx = 0 ∴ N (A) ⊆ N (ATA)

• if ATAx = 0, then

xTATAx = (Ax)T (Ax) = ‖Ax‖2 = 0 ⇒ Ax = 0 ∴ N (ATA) ⊆ N (A)

Proof complete. ■

4◦ ATA is positive definite, i.e., for any non-zero vector x,

xTATAx = (Ax)T (Ax) = ‖Ax‖2 ≥ 0

with equality if and only if Ax = 0.

Proposition 3.3.2 (3L (conti.)). The least-squares solution to the inconsistent system Ax = b is the
solution of the normal equation

ATAx̄ = AT b

Proposition 3.3.3 (3M). If the columns of A are linearly independent (rank = n), then ATA is
invertible and

x̄ = (ATA)−1AT b

The projection of b onto C(A) is therefore

pC(A) = Ax̄ = A(ATA)−1AT b

Proof. We consider rank(A) = r = n ⇒ N (A) = {0} ⇒ C(ATA) = {0}

∴ rank of ATA = n which means ATA has full rank.

∴ ATA is invertible.

■

Note. If rank(A) < n, then ATA is singular and the linear system has infinitely many solutions.
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Example.

A =

1 2

1 3

0 0


3×2

, b =

4

5

6


3×1

, Ax = b

x

y

b⃗

p =

4

5

0


Figure 3.7: Projection of b⃗ onto the span of the columns of A

1◦ x̄ = (ATA)−1AT b

(
2

1

)
⇒ p = Ax̄ =

4

5

0



2◦ C(A) = span


1

1

0

 ,

2

3

0


 = xy − plane ∴ p =

4

5

0



Remark. 1◦ The normal equation ATAx̄ = AT b is indeed consistent.

2◦ If b ∈ C(A), then p = b.

3◦ Suppose b ⊥ C(A), then p = 0.

4◦ When A is square and invertiblem, then C(A) = Rn

p = A(ATA)−1AT b = b

5◦ If Am×1 = a, then ATA = aTa

x̄ = (aTa)−1aT b =
aT b

aTa
= α

3.3.2 Projection Matrices

Let A be an m× n matrix over R, C(A) ≤ Rm.
Let b /∈ C(A), the closest point to b in C(A) is p = A(ATA)−1AT b.
Let P = A(ATA)−1AT .
i.e. The matrix projects any vector b onto C(A).
i.e. p = Pb is the component of b in C(A).
i.e. b− Pb (error) is the component of b in orthogonal complement N (AT ).
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Corollary 3.3.1.
I = P

projection onto C(A)
+ (I − P)

projection onto C(A)⊥

Theorem 3.3.1 (3N). Here are some properties of projection matrix

1. P2 = P

2. PT = P

3.3.3 Least Square Fitting of Data

C +Dt = b

Given m data points 

C +Dt1 = b1

C +Dt2 = b2
...

C +Dtm = bm

⇒


1 t1

1 t2
...

...
1 tm


(
C

D

)
=


b1

b2
...
bm



=⇒ minE2 = ‖b− (C +Dt)‖2 = ‖b−Ax‖2

=

m∑
i=1

(bi − C −Dti)
2

Example. (ti, bi) : (−1
t1
, 1
b1
), (1

t2
, 1
b2
), (2

t3
, 3
b3
)

A =

1 −1
1 1

1 2

 , x =

(
C

D

)
, b =

1

1

3

 ⇒ x̄ =

(
C̄

D̄

)
= (ATA)−1AT b =

(
9
7
4
7

)

t

b

9
9 + 4

9 t = b

(t1, b1)

(t2, b2)

(t3, b3)

p1 = 5
9 , p2 = 13

9 , p3 = 17
9

Figure 3.8: Least Squares Line Fitting
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P = A(ATA)−1AT =
1

14

13 3 −2
3 5 6

−2 6 10


3×3

⇒ p = Pb = 1

7

 5

13

17



∴ error vector = b− p =
1

7

 2

−6
4



P =
1

14

13 3 −2
3 5 6

−2 6 10

 −→ U =
1

14


13 3 −2

0
56

13
84
13

0 0 0

⇒ C(P ) = span


13

3

−2

 ,

3

5

6


⇒ x−3y+2z = 0

C(A) = span


1

1

1

 ,

−11
2


⇒ x− 3y + 2z = 0 ⇒ C(P ) = C(A)

3.4 Orthogonal Bases, Orthogonal Matrices and Gram-Schmidt
Orthogonalization

Recall. The vectors q1, q2, · · · qk are orthognormal if

qTi qj =

1 i = j

0 i 6= j

3.4.1 Orthogonal Matrices

Definition 3.4.1 (3Q). An orthognoral matrix Q is a square matrix satisfying QTQ = I. If Q =

[q1 q2 · · · qn], then

QTQ =


qT1
qT2
...
qTn

 (q1 q2 · · · qn) =



qT1 q1
=1

qT1 q2
=0

· · · qT1 qn

qT2 q1 qT2 q2
=1

· · · qT2 qn

...
...

. . .
...

qTn q1 qTn q2 · · · qTn qn


n×n

= In

i.e. The columns of Q are orthonormal and Q−1 = QT .

Example. Here are some examples:

• Rotation matrix

(
cos θ − sin θ

sin θ cos θ

)
YES

• Permutation matrix

0 1 0

1 0 0

0 0 1

 YES
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Proposition 3.4.1 (3R). Here are some properties

• ‖Qx‖ = ‖x‖, ∀x

• 〈Qx,Qy〉 = 〈x, y〉, ∀x, y

The properties preserve

1◦ length

2◦ inner product

3◦ angle (since cos θ =
〈x, y〉
‖x‖‖y‖

)

Remark. Since Q−1 = QT , we also have QQT = I. Therefore, the rows of a square matrix are
orthonormal whenever the columns are orthonormal.

We’ve learned that any vector is a combination of basis vectors. The problem becomes how to find the
coefficients of the combination.

Let {q1, q2, · · · , qn} be an orthonormal basis, then for any vector b

b = x1q1 + x2q2 + · · ·+ xnqn

try to compute xi’s:
qT1 b = x1q

T
1 q1
1

+ x2q
T
1 q2
0

+ · · ·+ xnq
T
1 qn
0

= x1

Similarly, we have xi = qTi b, i = 1, 2, · · · , n. i.e.

b = (qT1 b)q1 + (qT2 b)q2 + · · ·+ (qTn b)qn

for the matrix form

b = (q1 q2 · · · qn)


x1

x2

...
xn

 = Qx x = Q−1b = QT b =


qT1 b

qT2 b
...

qTn b



Recall. P =
aT b

aTa
· a

Therefore, we can rewrite b as

b =
qT1 b

qT1 q1
q1 +

qT2 b

qT2 q2
q2 + · · ·+

qTn b

qTn qn
qn = Pq1b+ Pq2b+ · · ·+ Pqnb (since qTi qi = 1)

i.e. The sum of the projections of b onto each basis vector equals to b itself.
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Lecture 11
25 Nov. 13:203.4.2 Rectangular Matrices with Orthogonal Columns

Ax = b, where A is not neccessarily square.

Similarly, we may have a system Qx = b, where Qm×n is NOT square and m > n.

Note.

QTQ =


qT1
...
qTn

(q1 · · · qn

)
=


1 · · · 0
...

. . .
...

0 · · · 1

 = In

In this case, QT is the left inverse of Q.

Proposition 3.4.2 (3S). If Q has orthonormal columns, then the least squares problem is easy.

• Qm×n: has no solution for most b ←→ Ax = b

• QTQx̄ = QT b: normal equation ←→ ATAx̄ = AT b

• x̄ = QT b: least squares solution

•

p = Qx̄ = QQT b = (q1 · · · qn)


qT1
...
qTn

 b

=

n∑
i=1

(qTi b)qi : projection of b onto C(Q) ←→ p = Ax̄

• P = QQT ←→ P = A(ATA)−1AT

3.4.3 The Gram-Schmidt Process

Recall. S = {x1, · · · , xn} is an orthognoral subset if V if ∀i 6= j, 〈xi, xj〉 = 0 and S is orthonormal
if additionally

〈xi, xi〉 = δij =

1, i = j

0, i 6= j

Notation. ‖x‖ =
√
〈x, x〉 is called the norm of x. (〈x, x〉 > 0, if x 6= 0)

Note. There are many norms,

• 1-norm: ‖x‖1 =
∑n

i=1 |xi|

• 2-norm: ‖x‖2 =
√∑n

i=1 x
2
i

• ∞-norm: ‖x‖∞ = max1≤i≤n |xi|
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Theorem 3.4.1 (1). Let V be an inner product space and let S = {x1 · · ·xn} be an orthogonal
subset of non-zero vectors. If

y =

k∑
i=1

aixi,

then

aj =
〈y, xj〉
‖xj‖2

for j = 1, · · · , n. (i.e. y =

k∑
i=1

〈y, xj〉
‖xj‖2

xj)

Proof. Since

〈yi, xj〉 =
k∑

i=1

= aj

Thus,

aj =
〈y, xj〉
‖xj‖2

.

■

Corollary 3.4.1 (1). If S is, then

y =
k∑

i=1

〈y, xj〉xj .

Corollary 3.4.2 (2). If S is an orthonormal set of non-zero vectors, then S is linearly independent.

Example. In R3,
{

1√
2
(1, 1, 0),

1√
3
(1,−1, 1), 1√

6
(−1, 1, 2)

}
. Find the orthognormal set.

Given (1, 2, 3) =
3√
2

[
1√
2
(1, 1, 0)

]
+

2√
3

[
4√
3
(1,−1, 1)

]
+

2√
6

[
1√
6
(−1, 1, 2)

]
.

Remark. Suppose {y1, y2} is linearly independent set. We would like to construct an orthogonal
set, {x1, x2}, that spans the same subspace. One way is to take x1 = y1 and x2 = y2 − p, where p

is the projection of y2 onto y1.

p =
〈y2, y1〉
‖y1‖2

y1

In other words, we take

x2 = y2 −
〈y2, y1〉
‖y1‖2

y1.

Theorem 3.4.2 (2. extend to n vectors). Let V be an inner product space and let S = {y1, · · · , ym}
be a linearly independent subset of V . Define S′ = {x1, · · · , xm} where

x1 = y1, xk = yk −
k−1∑
i=1

〈yk, xi〉
‖xi‖2

xi, for 2 ≤ k ≤ m.

Gram-Schmidt Orthogonalization

THen S′ is an orthogonal set of non-zero vectors such that

span(S′) = span(S).

Proof. Supplymentary notes. ■
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Example. In R3, let y1 = (1, 1, 0), y2 = (2, 0, 1), y3 = (2, 2, 1). Find an orthogonal basis for
x1, x2, x3.

• x1 = y1 = (1, 1, 0)

• x2 = y2 −
〈y2, x1〉
‖x1‖2

x1 = (2, 0, 1)− 2

2
(1, 1, 0) = (1,−1, 1)

• x3 = y3 −
〈y3, x1〉
‖x1‖2

x1 −
〈y3, x2〉
‖x2‖2

x2 = (−1

3
,
1

3
,
2

3
)

3.4.4 The Factorization A = QR

A = (a1 | · · · | an)m×n −→ Q = (q1 | · · · | qn)m×n QTQ = In

Theorem 3.4.3 (3U). Every m× n matrix A with linearly independent columns can be factored as

A = Qm×nRn×n

The columns of Q are orthognormal and R is an invertible upper-triangular matrix. When m = n

and all matrices are square, Q is orthogonal.

Proof. We use Gram-Schmidt Orthogonalization process to construct Q and R.

As previously seen (Theorem (2)).

q′j = aj −
j−1∑
i=1

〈aj , qi〉
‖qi‖2

· qi, qj =
q′j
‖q′j‖

Let a1, · · · , an be the columns of A. By Gram-Schmidt Orthogonalization process, we can construct
orthonormal vectors

q1, · · · , qn 3 span{q1, · · · , qn} = span{a1, · · · , an} for j = 1, · · · , n

So
aj = (qTa) · q1 + · · ·+ (qTj−1a) · qj−1 + ‖q′j‖ · qj (i.e. linear combination of q′js)

A = (a1 | · · · | an) = (q1 | · · · | qn)


‖q′1‖ qT1 a2 · · · qT1 an

0 ‖q′2‖ · · · qT2 an
...

...
. . .

...
0 0 · · · ‖q′n‖

 = QR

j = 1 : a1 = ‖q′1‖ · q1
j = 2 : a2 = (qT1 a2) · q1 + ‖q′2‖ · q2
...

j = n : an = (qT1 an) · q1 + (qT2 an) · q2 + · · ·+ (qTn−1an) · qn−1 + ‖q′n‖ · qn

i.e. R is invertible since its diagonal entries are non-zero. ■
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Example.

A =

1 −2 −3
2 0 −3
2 4 3

 a1 =

1

2

2

 , a2 =

−20
4

 , a3 =

−3−3
3



1◦ q′1 = a1 =

1

2

2

 , q1 =
q′1
‖q′1‖

=
1

3

1

2

2



2◦ q′2 = a2 − 〈a2, q1〉 · q1 =

−20
4

− 2 · 1
3

1

2

2

 =
1

3

−8−4
8

 , q2 =
q′2
‖q′2‖

=
1

12

−8−4
8



3◦ q′3 = a3 − 〈a3, q1〉 · q1 − 〈a3, q2〉 · q2 =

−3−3
3

 − (−1) · 1
3

1

2

2

 − 5 · 1
3

−2−1
2

 =
1

3

 2

−2
1

 , q3 =

q′3
‖q′3‖

=
1

1

 2/3

−2/3
1/3


4◦ Thus,

A =

1 −2 −3
2 0 −3
2 4 3

 =

 | | |
q1 q2 q3

| | |


orthognormal columns

3 2 −1
0 4 5

0 0 1


invertible upper-triangular record Gram-Schmidt

= QR

Remark. A: linearly independent columns

Ax = b inconsistent

−→ ATAx̄ = AT b (A = QR→ ATA = RTQTQR = RTR)

−→ RTRx̄ = AT b (R is invertible)

−→ Rx̄ = QT b

i.e. inconsistent
Ax=b

→ consistent
Rx̄=QT b
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Determinant

4.1 Introduction to Determinants
(A) A test for invertivility If detA = 0, A is singular

If detA 6= 0, A is invertible

The most important application is whether det(A− λI) = 0 (characteristic polynomial). We shall
see that det(A− λI) is a polynomial of degree n in λ.

(B) The determinant gives formulas for the pivots i.e.

determinant = ±(product of pivots)

(C) The determinant measures the dependence of A−1b on each entry of b (Cramer’s rule). If one
parameter in changed in an experiment, or one observation is corrected, the influence coefficients
on x = A−1b is a ratio of determinants.

4.2 The Properties of Determinants

Definition 4.2.1 (determinant). Let A be an n× n square matrix over F . The determinant of A is
a function

det : Mn×n(F )→ F

satisfies the following conditions:

(i) The detA is a linear function if the i-th row (i = 1, 2, · · · , n)when the other (n− 1) rows are
held fixed. i.e. if

detA = D(A1, · · · , Ai, · · · , An)where Ai is the i-th row of A,

then

det(A1, · · · , Ai−1, αAi +A′
i, Ai+1, · · · , An)

=α det(A1, · · · , Ai−1, Ai, Ai+1, · · · , An) + det(A1, · · · , Ai−1, A
′
i, Ai+1, · · · , An)
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Example.

det
(
a+ a′ b+ b′

c d

)
= det

(
a′ b

c d

)
+ det

(
a b′

c d

)

(ii) det I = 1

(iii) det(PijA) = − detA, where PijA is the permutation matrix.

(iv) detA = 0, if A has two identical rows.

(v) det(EA) = detA, if E is the elementary operation of subtracting a multiple of one row from
another row.

Proof. For the following steps,

det(A1, · · · , Ai−1, αAi +Aj , Ai+1, · · · , An)

(i)
= α det(A1, · · · , Ai−1, Ai, Ai+1, · · · , An) + det(A1, · · · , Ai−1, Aj , Ai+1, · · · , An)

(iv)
= α det(A) + 0 = det(A)

i.e. det(EA) = detA. ■

(vi) If A has a row of zeros, then detA = 0.

Proof. (v) + (iv) ■

(vii) If A is triangular, then detA = a11a22 · · · ann

Proof. Here is the steps

1◦ detA (v)
= det


a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

 (i)
= a11 det


a22 · · · a2n
...

. . .
...

0 · · · ann

 = · · · (ii)
=

n∏
i=1

aii

2◦ If ajj = 0, by (v), the j-th row can be converted to a zero row, thus by (vi),
detA = 0.

■

(viii) If A is singular ⇔ detA = 0. If A is invertible ⇔ detA 6= 0.

Proof. Let
A

E1E2···−−−−−→ U

detA (iii)
= detU (vii)

= ± d1d2 · · · dn

■

(ix) det(AB) = detA · detB
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(x) det
(
AT
)
= detA

Proof. We separately consider two cases:

• Case1: A is singular ⇔ AT is singular.

• Case2: A is nonsigular ⇒ PA = LDU

1◦ (detP )(detA) = detL detD detU = detD
2◦ (PA)T = (LDU)T and thus

(detAT )(detPT ) = detDT ⇒ detAT = detD = detA

Note. PPT = I ⇒ (detP )(detPT ) = det I = 1 and detP, detPT ∈ {1,−1}

Done. ■

Example.

An =



2 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


n×n

= L



2 0 0 · · · 0 0

0 3
2 0 · · · 0 0

0 0 4
3 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · n
n−1 0

0 0 0 · · · 0 n+1
n


U

Thus,
detAn = 2 · 3

2
· 4
3
· · · n

n− 1
· n+ 1

n
= n+ 1.

4.3 Formulas for the Determinant

Proposition 4.3.1 (4A). If A is nonsingular, then A = P−1LDU and

detA = ±(product of pivots)

Example. (
a b

c d

)
=

(
1 0

c/a 1

)(
a 0

0 ad−bc
a

)(
1 b/a

0 1

)
⇒ det

(
a b

c d

)
= ad− bc

Example.

det
(
a b

c d

)
= det

(
a 0

c d

)
+ det

(
0 b

c d

)

= det
(
a 0

c 0

)
+ det

(
a 0

0 d

)
+ det

(
0 b

c 0

)
+ det

(
0 b

0 d

)

Thus, the non-zero terms have to come in different columns
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Lecture 12
2 Dec. 13:20∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ =
(1,2,3)∣∣∣∣∣∣∣

a11 0 0

0 a22 0

0 0 a33

∣∣∣∣∣∣∣+
(2,3,1)∣∣∣∣∣∣∣

0 a12 0

0 0 a23

a31 0 0

∣∣∣∣∣∣∣+
(3,1,2)∣∣∣∣∣∣∣

0 0 a13

a21 0 0

0 a32 0

∣∣∣∣∣∣∣

+

(2,1,3)∣∣∣∣∣∣∣
0 a12 0

a21 0 0

0 0 a33

∣∣∣∣∣∣∣+
(3,2,1)∣∣∣∣∣∣∣

0 0 a13

0 a22 0

a31 0 0

∣∣∣∣∣∣∣+
(1,3,2)∣∣∣∣∣∣∣

a11 0 0

0 0 a23

0 a32 0

∣∣∣∣∣∣∣
= a11a22a33

∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣+ a12a23a31

∣∣∣∣∣∣∣
0 1 0

0 0 1

1 0 0

∣∣∣∣∣∣∣+ a13a21a32

∣∣∣∣∣∣∣
0 0 1

1 0 0

0 1 0

∣∣∣∣∣∣∣
+ a12a21a33

∣∣∣∣∣∣∣
0 1 0

1 0 0

0 0 1

∣∣∣∣∣∣∣+ a13a22a31

∣∣∣∣∣∣∣
0 0 1

0 1 0

1 0 0

∣∣∣∣∣∣∣+ a11a23a32

∣∣∣∣∣∣∣
1 0 0

0 0 1

0 1 0

∣∣∣∣∣∣∣
⇒ n! ways to permute the numbers 1, 2, . . . , n

Corollary 4.3.1.

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

ai,σ(i)

)
where Sn is the set of all permutations on {1, 2, . . . , n} and sgn(σ) is the sign of the permutation σ.

|Sn| = n!

In other words det(A) is the sum of n! terms and for each term, every row and column cintributes to
exactly one element. So it is not difficult to see that

detA = a11A11 + a12A12 + . . .+ a1nA1n

where
A1j = (−1)1+jM1j

is the cofactor of a1j , and M1j is the submatrix of A obtained by deleting the 1-th row and j-th column.
Similarly,

Proposition 4.3.2 (4B).
detA = ai1Ai1 + ai2Ai2 + . . .+ ainAin

where
Aij = (−1)i+jMij

is the cofactor of aij . Mij is the submatrix of A obtained by deleting the i-th row and j-th column.
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Example.

A =


1 2 5 4

3 6 4 2

0 332 0 434

−1 2 2 3



detA = 3(−1)3+2 · detM32 + 4(−1)3+4 · detM34

= (−3)

∣∣∣∣∣∣∣
1 5 4

3 4 2

−1 2 3

∣∣∣∣∣∣∣+ (−4)

∣∣∣∣∣∣∣
1 2 5

3 1 4

−1 2 2

∣∣∣∣∣∣∣
= (−3)[1(8) + 5(−1)(11) + 4(10)] + (−4)[1(−6) + 2(10)(−1) + 5(7)]

= −15

∵ detA = detAT

so we can also expand along columns. i.e.

detA = a1jA1j + a2jA2j + . . .+ anjAnj

4.4 Appplications of Determinants
(A) The computation of A−1

A
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


adj(A) adjugate matrix

A11 A21 . . . An1

A12 A22 . . . An2

...
...

. . .
...

A1n A2n . . . Ann

 = det(A)In

a11A21 + a12A22 + . . .+ a1nA2n = det(B)

B =


a11 a12 . . . a1n

a11 a12 . . . a1n
...

...
. . .

...
an1 an2 . . . ann


Proposition 4.4.1 (4C).

A · adj(A) = det(A)In

If det(A) 6= 0, then
A−1 =

1

det(A)
adj(A)

If det(A) = 0, then A is not invertible.

CHAPTER 4. DETERMINANT 73



Lecture 12

(B) The solution of system of linear equations

Theorem 4.4.1 (4D - Cramer’s Rule). If A is an invertible n × n matrix, then the unique
solution of the system of equations Ax = b is x = A−1b and

xj =
det(Aj)

det(A)
,where Bj =


a11 a12 . . . a1,j−1 b1 a1,j+1 . . . a1n

a21 a22 . . . a2,j−1 b2 a2,j+1 . . . a2n
...

...
. . .

...
...

...
. . .

...
an1 an2 . . . an,j−1 bn

j-th column
an,j+1 . . . ann


Proof. Let

detBj =

n∑
i=1

biAij

Since A is invertible, by Proposition 4C, we have

A−1 =
1

detA adj(A)

Thus, 
x1

x2

...
xn

 =
1

detA


A11 A21 . . . An1

A12 A22 . . . An2

...
...

. . .
...

A1n A2n . . . Ann



b1

b2
...
bn

 =
1

detA


detB1

detB2

...
detBn


■

(C) Volume of parallelepipeds

AAT =


— a1 —
— a2 —

...
— an —


 | | |

a1 a2 . . . an

| | |

 =


ℓ21 0 . . . 0

0 ℓ22 . . . 0
...

...
. . .

...
0 0 . . . ℓ2n

 ℓi : length of ai

det
(
AAT

)
= (detA)2 = ℓ21ℓ

2
2 . . . ℓ

2
n

∴ If rows of A are mutually perpendicular, | detA| = ℓ1ℓ2 . . . ℓn

(D) A formula for pivots

Proposition 4.4.2 (4E). If A is factored into LDU , then upper left corners satisfy

Ak = LkDkUk

For every k, the submatrix Ak is going through a Gaussian elimination of its own.(
Lk 0

B C

)(
Dk 0

0 E

)(
Uk F

0 G

)
=

(
LkDkUk LkDkF

BDkUk BDkF + CEG

)
= A

The pivot entries ate all nonzero whenever the numbers of detAk’s are all nonzero.

Note.

detAk = (detLk) · (detDk) · (detUk) = det(Dk) = detDk = d11d22 . . . dkk
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Notation.
dk =

detAk

detAk−1
for k = 1, 2, . . . , n (detA0 := 1)

Gaussian Elimination can be carried out without row exchanges if and only if leading submatrices
A1, A2, . . . , An are all nonzero.

d1d2 . . . dk =
detA1

detA0
· detA2

detA1
· . . . · detAn

detAn−1
= detAn = detA
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Eigenvalues and Eigenvectors

5.1 Introduction
Question. What are the eigenvalues of a matrix and how useful are they?

Consider a matrix A =

(
1 1

−2 4

)
, then A can be treated as a linear transformation on R2 that maps

each vector v to T (v) = u. i.e.

v =

(
x1

x2

)
T7−→ T (v) = u = Av

and we can get
Av = λv

Definition 5.1.1. Let A be an n× n matrix. If there exists a nonzero vector v s.t.

Av = λv

for some scalar λ, then λ is called an eigenvalue of A and v is called an eigenvector of A

corresponding to λ.

Theorem 5.1.1 (5A).
Av = λv⇔ det(A− λI) = 0

and for each eigenvalue λ exists at least one (nonzero) eigenvector x associated with it.

Proof. We separately prove the two directions.

⇒ By definition, ∃ nonzero vector x s.t. Ax = λx. This means,

Ax− λIx = 0

has nonzero solution, so A− λI must be singular. i.e.

det(A− λI) = 0

⇐ If det(A− λI) = 0, then A− λI has nontrivial solution(s) v. Hence,

Av = λv
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implies that λ is an eigenvalue of A with eigenvector v.

Proof complete. ■

Remark. Eigenvectors are (by definition) nonzero vectors and for each eigenvalue, its corresponding
eigenvectors are NEVER unique. e.g.

A(αv) = αAv = αλv = λ(αv) ∀α 6= 0

Note. An n× n matrix A can have at most n distinct (real or complex) eigenvalues.

Definition 5.1.2.
det(A− λI) = 0

is called the characteristic equation of A and the polynomial

p(λ) = det(A− λI)

is called the characteristic polynomial of A. For each eigenvalue λ, the eigenspace correspond-
ing to λ is defined as

Eλ = {v ∈ Rn : Av = λv}

which is the null space of A− λI.

Example.

A =

(
1 1

−2 4

)

A− λI =

(
1− λ 1

−2 4− λ

)
⇒ |A− λI| = (1− λ)(4− λ)− (−2)(1) = 0 ⇒ λ2 − 5λ+ 6 = 0

Example.

A =

(
3 0

0 2

)

λ = 3, 2

Example. Projection matrix

P =

(
0.5 0.5

0.5 0.5

)

det(P − λI) =

∣∣∣∣∣0.5− λ 0.5

0.5 0.5− λ

∣∣∣∣∣ = (λ− 1)λ = 0
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1◦ λ1 = 1, P − λ1I =

(
0.5− 1 0.5

0.5 0.5− 1

)
=

(
−0.5 0.5

0.5 −0.5

)

⇒



−0.5 0.5

0.5 −0.5

x1 = 0 ⇒ x1 =

1

1


0.5 0.5

0.5 0.5

x2 = 0 ⇒ x2 =

 1

−1


2◦ λ2 = 0, P − λ2I = P

Example. A is triangular

det(A− λI) =

∣∣∣∣∣∣∣∣∣∣
a11 − λ 0 . . . 0

0 a22 − λ . . . 0
...

...
. . .

...
0 0 . . . ann − λ

∣∣∣∣∣∣∣∣∣∣
=

n∏
i=1

(aii − λ) = 0

Therefore, the eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 5.1.2 (5B). The sum of the n eigenvalues equals the sum of the n diagonal entries:

tr(A) =

n∑
i=1

aii =

n∑
i=1

λi

Furthermore, the product of the n eigenvalues equals the product of the n diagonal entries:

det(A) =

n∏
i=1

aii =

n∏
i=1

λi

Proof. We separately prove the two parts.

(1) pA(x) = (λ1 − x)(λ2 − x) . . . (λn − x) = (−x)n + (λ1 + λ2 + · · ·+ λn)(−x)n−1 + . . .

The coefficient of (−x)n−1 in pA(x) is λ1 + λ2 + · · ·+ λn.

(2) Let A =


a11 a12 · · · a1n

a21 a22
. . .

...
...

...
. . .

...
an1 an2 · · · ann



pA(x) = det(A− xI) = det


a11 − x a12 · · · a1n

a21 a22 − x · · · a2n
...

...
. . .

...
an1 an2 · · · ann − x


= (a11 − x)× C11 + a12 × C12 + · · ·+ a1n × C1n, where C1j is the cofactor of a1j .

For C1j , ∀j = 2, 3, . . . , n, the highest power of (−x) is n− 2.
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For example, C12 = (−1)1+2 det


a21 a23 · · · a2n

a31 a33 − x · · · a3n
...

...
. . .

...
an1 an3 · · · ann − x

.

So C1j , ∀j = 2, 3, . . . , n can’t generate the (−x)n−1 term.
The coefficient of (−x)n−1 in pA(x) is equal to the coefficient of (−x)n−1 in

(a11 − x)× det


a22 − x a23 · · · a2n

a32 a33 − x · · · a3n
...

...
. . .

...
an2 an3 · · · ann − x

 .

Similarly,

the coefficient of (−x)n−1 in (a11 − x)× det


a22 − x a23 · · · a2n

a32 a33 − x
. . . a3n

...
...

. . .
...

an2 an3 · · · ann − x


is equal to the coefficient of (−x)n−1 in

(a11 − x)(a22 − x)× det


a33 − x a34 · · · a3n

a43 a44 − x · · · a4n
...

...
. . .

...
an3 an4 · · · ann − x

 .

Therefore, the coefficient of (−x)n−1 in pA(x) will be equal to the coefficient of (−x)n−1 in
(a11 − x)(a22 − x) . . . (ann − x).
i.e. the coefficient of (−x)n−1 in pA(x) is a11 + a22 + · · ·+ ann = tr(A).

By (1) (2), we have λ1 + λ2 + · · ·+ λn = tr(A).

Next, we prove the product part.

pA(x) = det(A− xI) = (λ1 − x)(λ2 − x) . . . (λn − x).

⇒ pA(0) = det(A) = λ1λ2 . . . λn

■
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Let us summarize some properties of eigenvalues and eigenvectors.

(1) To each eigenvalue, there is an eigenvector corresponding to it, and to each eigenvector, there is
an eigenvalue corresponding to it.

(2) An eigenvalue can be zero. However, an eigenvector can never be the zero vector.

(3) If Ax = λx, then A(αx) = λ(αx)

i.e. any scalar multiple of an eigenvector is still an eigenvector corresponding to the same eigenvalue.
However, there can be independent eigenvectors associated with the same eigenvalue.

Theorem 5.1.3. The following statements are equivalent:

(a) λ is an eigenvalue of A.

(b) det(A− λI) = 0.

(c) A− λI is not singular.

(5) The eigenvalue of A are the roots of its characteristic polynomial p(λ) = det(A− λI) = 0.

(6) If λ is an eigenvalue of A, then the corresponding eigenvectors is the solution(s) of the linear system
(A− λI)x = 0.

(7) If λ is an eigenvalue of A, then the nullspace of (A− λI) is called the eigenspace corresponding to
λ.

(8) λ may be a repeated root of the characteristic polynomial. Thus multiplicity of repetition is called
the algebraic multiplicity of the eigenvalue. The dimension of the eigenspace corresponding to
λ is called the geometric multiplicity of the eigenvalue.

(9) If A is a matrix over R, A may have no eigenvalues in R. e.g.

A =

(
0 −1
1 0

)

However, if we allow complex eigenvalues and eigenvectors, then every real matrix has at least one
eigenvalue in C.
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Lecture 13
9 Dec. 13:205.2 Diagonalization of a Matrix

Definition 5.2.1. An n × n matrix A is said to be diagonalizable if there exists a nonsingular
matrix S such that

S−1AS = Λ

where Λ is a diagonal matrix.

Theorem 5.2.1 (5C). Suppose An×n has n linearly independent eigenvectors x1, x2, . . . , xn. Let S

be the n× n matrix with x1, x2, . . . , xn as its columns. Then

S−1AS = Λ =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


where λi’s satisfy Axi = λixi.

Proof. Suppose S = (x1 | · · · | xn)n×n. Then

AS = (Ax1 | · · · | Axn) = (λ1x1 | · · · | λnxn)n×n

= (x1 | · · · | xn)


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = SΛ

⇒ S−1AS = Λ

for nonsingular S. ■

Remark (1). If λ1, . . . , λn are distinct, then the eigenvectors x1, . . . , xn are linearly independent. In
other words, a matrix with distinct eigenvalues can be diagonalized.

Remark (2). The diagnoalizing matrix S is not unique. Repeated eigenvalues leave more e.g.

S−1IS = I

is true for any nonsingular S.

Remark (3). AS = SΛ holds if and only if the columns of S are eigenvectors of A.

Remark (4). Note all matrices posses n linearly independent eigenvectors and therefore not all
matrices are diagonalizable.

Theorem 5.2.2 (5D). The eigenvectors x1, . . . , xn coorsponding to the distinct eigenvalues λ1, . . . , λk

of A are linearly independent.
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Example. (
1 −1
0 1

)
where λ1 = λ2 = 1(

1 −1
0 1

)(
x1

x2

)
=

(
x1 − x2

x2

)
⇒ x =

(
x1

x2

)
= t

(
1

0

)
, t ∈ R

Let P =

(
1 2

0 0

)
, when we have

AP =

(
1 −1
0 1

)(
1 2

0 0

)
=

(
1 2

0 0

)(
1 0

0 1

)
= PD

which implies that A is not diagonalizable.

Note. We have following properties

1◦ Diagonalizability is connected to eigenvectors (n linearly independent eigenvectors).

2◦ Invertibility is connected to eigenvalues (no zero eigenvalue).

The only connection between diagonalizability and invertibility probably is

“Diagonalization can fail only if there are repeated eigenvalues.”

Example.

A =

(
1/2 1/2

1/2 1/2

)

We have AT = A

A2 = A
⇒ A is a projection matrix where the eigenvalues are 0, 1

• λ = 1, we have eigenvector x1 = t

(
1

1

)

• λ = 0, we have eigenvector x2 = t

(
1

−1

)

S =

(
1 1

1 −1

)
, ⇒ S−1AS = Λ =

(
1 0

0 0

)

Example.
Q = I − 2uuT , u ∈ Rn, uTu = 1

is called a Householder reflection matrix. (Reflection about the hyperplane orthogonal to u

direction.)

Assume

u =

(
1/
√
2

1/
√
2

)
⇒ Q =

(
0 −1
−1 0

)
Qx̄ =

(
0 −1
−1 0

)(
x

y

)
=

(
−y
−x

)
We have

det(Q− λI) = λ2 − 1 = 0⇒ λ1 = 1, λ2 = −1
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• λ1 = 1, eigenvector x1 = t

(
1

−1

)

• λ2 = −1, eigenvector x2 = t

(
1

1

)
The Householder transformation is a reflection about the axis perpendicular to u.

5.2.1 Powers and Products: Ak and AB

If Ax = λx, x 6= 0

⇒ A2x = A(Ax) = λAx = λ2x

Proposition 5.2.1 (5E). The eigenvalues of Ak are λk
1 , λ

k
2 , . . . , λ

k
n i.e. the k-th power of the eigen-

values of A.

• If S−1AS = Λ, then S−1AkS = Λk.

• If A is invertible, then the eigenvalues of A−1 are λ−1
1 , λ−1

2 , . . . , λ−1
n and S−1A−1S = Λ−1

Note. λ is an eigenvalue of A and µ is an eigenvalue of B and x is an eigenvector of B.

(AB)x = µAx = µλx = (λµ)x

but in general x is not necessarily an eigenvector of A corresponding to λ.

Example.

AB =

(
0 1

0 0

)(
0 0

1 0

)
=

(
1 0

0 0

)
which has eigenvalues 1 and 0, but neither A nor B has any eigenvalues 1.

Note. λ : eigenvalue of A

µ : eigenvalue of B

{
⇒ λµ : may not be an eigenvalue of AB

⇒ λ+ µ : may not be an eigenvalue of A+B

Theorem 5.2.3 (5F). If A and B are diagonalizable , they have the same eigenvector matrix S if
and only if they commute i.e. AB = BA.

Proof. We follow the two directions.

“⇒” If ∃ S 3 S−1AS = Λ1, S
−1BS = Λ2, then we have

AB = SΛ1S
−1SΛ2S

−1 = SΛ2Λ1S
−1 = SΛ2S

−1SΛ1S
−1 = BA

“⇐” We assume that all eigenvalues of A are distinct. If AB = BA, and Ax = λx, then

Case 1 Bx = 0, i.e. x is an eigenvector of B corresponding to eigenvalue 0.

Case 2 Bx 6= 0, then
ABx = BAx = λBx⇒ Ax′ = λx′
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So,
x′ = Bx = µx i.e. x is an eigenvector of B.

Hence, A, B share the same eigenvectors.

Proof is complete. ■

Theorem 5.2.4. Let A be an n×n matrix over F . Assume. that the characteristic polynomial of A
has solutions in F . Then for each eigenvalue λ of A, its geometric multiplicity is less than or equal
to its algebraic multiplicity.

Theorem 5.2.5. AB and BA have the same eigenvalues.

5.3 Difference Equations and Powers Ak

• Difference equations: move forward in a finite # of finite steps.

• Differential equations: take infinite # of infinitesimal steps.

Example. Fibonacci sequence:
0, 1, 1, 2, 3, 5, 8, 13, · · ·

F0 = 0

F1 = 1

Fk+2 = Fk+1 + Fk, k ≥ 0

What is F10000000000?

Let uk =

(
Fk+1

Fk

)
, uk+1 =

(
Fk+2

Fk+1

)
=

(
1 1

1 0

)(
Fk+1

Fk

)

Let A =

(
1 1

1 0

)
, then we have

uk+1 = Auk ⇒ uk = Aku0

where u0 =

(
F1

F0

)
=

(
1

0

)
.

Proposition 5.3.1 (5G). If A can be diagonalized, say A = SΛS−1, then

uk = Aku0 = SΛkS−1u0 = SΛkC

where C = S−1u0 is a constant vector. Then,

uk = SΛkC =
(
x1 x2 · · · xn

)

λk
1 0 · · · 0

0 λk
2 · · · 0

...
...

. . .
...

0 0 · · · λk
n



c1

c2
...
cn

 =

n∑
i=1

ciλ
k
i xi

i.e. the solution is a linear combination of λk
i xi.
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Proposition 5.3.2 (5H). If u0 = c1x1 + c2x2 + · · · + cnxn where xi’s are eigenvectors of A corre-
sponding to eigenvalues λi’s, then

uk = Aku0 = c1λ
k
1x1 + c2λ

k
2x2 + · · ·+ cnλ

k
nxn

In general, u0 is not an eigenvector but if u0 is a linear combination of eigenvectors, then uk is the
same linear combination of λk

i xi.

Note. To solve the difference equation uk+1 = Auk, u0 is given.

1◦ Find λi’s and xi’s of A.

2◦ Let S =
(
x1 x2 · · · xn

)
, find C = S−1u0.

3◦ The solution is

uk = SΛkC =

n∑
i=1

ciλ
k
i xi

5.3.1 Markov Process

Suppose each year 1/10 of the population moves in California and 2/10 moves out of California to other
states. Let y be the peeple outside California and z be the people inside California, then at the end of
the of the 1st year, we havey1 = 9

10y0 +
2
10z0

z1 = 1
10y0 +

8
10z0

⇒

(
y1

z1

)
=

(
9/10 2/10

1/10 8/10

)(
y0

z0

)

Cal. Other

2/10

1/10

8/10
9/10

Figure 5.1: Markov Process

The essential assumption of Markov process is

• The population in both states is constant and never be negative.

• The uk+1 only depends on uk i.e.
uk+1 = Auk

• The total population is constant.

1. all entries are positive or zero.

2. column sums are 1.
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Example.

A =

(
9/10 2/10

1/10 8/10

)

We have
det(A− λI) = λ2 − 17

10
λ+ 1 = 0⇒ λ1 = 1, λ2 =

7

10

Since

A =

(
2/3 1/3

1/3 −1/3

)(
1 0

0 7/10

)(
1 1

1 −2

)
(A = SΛS−1)

We have(
yk

zk

)
= Ak

(
y0

z0

)
=

(
2/3 1/3

1/3 −1/3

)(
1k 0

0 (7/10)k

)(
1 1

1 −2

)(
y0

z0

)
c =

(
y0 + z0

y0 − 2z0

)

= (y0 + z0)(1)
k ·

(
2/3

1/3

)
+ (y0 − 2z0)(7/10)

k ·

(
1/3

−1/3

)

When k →∞, we have

lim
k→∞

(
yk

zk

)
= (y0 + z0)

(
2/3

1/3

)
i.e. No matter what the initial population distribution is, the population will eventually stabilize at 2/3
outside and 1/3 inside. (

0.9 0.2

0.1 0.8

)(
2/3

1/3

)
=

(
2/3

1/3

)
or Au∞ = u∞

The steady state u∞ is an eigenvector of A corresponding to λ = 1.
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Appendix A

SVD and Applications

A.1 Singular Value Decomposition (SVD)

Definition A.1.1 (Singular Value Decomposition). Any matrix A ∈ Rm×n can be factored into

A = UΣV T = (orthogonal)(diagonal)(orthogonal)

where:

• The columns of U ∈ Rm×m are eigenvectors of AAT and satisfy UTU = I.

• The columns of V ∈ Rn×n are eigenvectors of ATA and satisfy V TV = I.

• When A has rank r, the diagonal matrix Σ ∈ Rm×n has r singular values, σ1 ≥ · · · ≥ σr > 0,
filling the first r places on the main diagonal. The rest of Σ is zero.

Remark. The r singular values are the square roots of the nonzero eigenvalues of both AAT and
ATA.

Theorem A.1.1 (Fundamental Subspaces Basis). U and V give orthonormal bases for all four fun-
damental subspaces:

• First r columns of U : Basis for the column space of A.

• Last m− r columns of U : Basis for the left nullspace of A.

• First r columns of V : Basis for the row space of A.

• Last n− r columns of V : Basis for the nullspace of A.

Remark (1).
AAT = UΣV TV ΣTUT = U(ΣΣT )UT

Here, ΣΣT is the m×m eigenvalue matrix with σ2
1 , . . . , σ

2
r on the diagonal.

Remark (2).
ATA = V ΣTUTUΣV T = V (ΣTΣ)V T

Here, ΣTΣ is the n× n eigenvalue matrix with σ2
1 , . . . , σ

2
r on the diagonal.
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Remark (3). We can express A as a sum of rank-1 matrices:

A =

r∑
j=1

σjujv
T
j

where uj is the j-th column of U and vj is the j-th column of V .

Remark (4). The action of A on vj is given by Avj = σjuj .

Theorem A.1.2 (Procedure to Find SVD). To find the SVD of a matrix A:

1. Calculate ATA.

2. Find the eigenvalues of ATA: σ2
1 ≥ · · · ≥ σ2

r > 0 = σ2
r+1 = · · · = σ2

n.

3. Construct Σ by placing σ1, . . . , σr on the diagonal and zeros elsewhere.

4. Find the eigenvectors for ATA. For eigenvectors with the same eigenvalue, use Gram-Schmidt
orthogonalization.

5. Construct V = [v1 . . . vn] where vj is the normalized eigenvector corresponding to σ2
j .

6. Construct U = [u1 . . . um]:

• For 1 ≤ j ≤ r, calculate uj =
1
σj
Avj .

• For the remaining columns (ur+1, . . . , um), find an orthonormal basis for the nullspace
of AT (Left Nullspace) using Gram-Schmidt.

Example. Find the SVD for A =

(
1 −1 2

−1 1 −2

)
.

1. Calculate ATA =

 2 −2 4

−2 2 −4
4 −4 8

.

2. Eigenvalues of ATA: σ2
1 = 12, σ2

2 = 0, σ2
3 = 0.

3. Σ =

(√
12 0 0

0 0 0

)
.

4. Eigenvectors:

• For λ = 12: N(ATA− 12I) = span


−11
−2


.

• For λ = 0: N(ATA) = span


1

1

0

 ,

−20
1


. After Gram-Schmidt:


1

1

0

 ,

−11
1


.

5. Construct V :

v1 =
1√
6

−11
−2

 , v2 =
1√
2

1

1

0

 , v3 =
1√
3

−11
1


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Thus, V =


−1√
6

1√
2

−1√
3

1√
6

1√
2

1√
3

−2√
6

0 1√
3

.

6. Construct U :

• u1 = 1√
12
Av1 =

(
−1√
2
1√
2

)
.

• Find u2 from N(AT ) = span

{(
1

1

)}
. Normalized: u2 =

(
1√
2
1√
2

)
.

Thus, U =

(
−1√
2

1√
2

1√
2

1√
2

)
.

A.2 Applications of SVD

A.2.1 Image Processing

An image can be represented as an m × n matrix of pixels. We can use SVD to find the essential
information and compress the image.

• Typically, some singular values σ are significant while others are extremely small.

• We can keep the first k largest singular values and discard the rest. The approximation is:

A ≈
k∑

i=1

σiuiv
T
i

• This reduces the data from m× n to k(m+ n+ 1), saving storage/bandwidth.

A.2.2 Information Retrieval (Latent Semantic Indexing)

Definition A.2.1 (Term-by-Document Matrix). Construct a matrix A = [ai,j ] where ai,j represents
the frequency of term i in document j.

Example (Search Engine Query). Consider a matrix A representing terms (Advisor, Algebra, Ball,
Calculus, Computer, Math) across 4 documents.
A query for "Club" can be processed by projecting terms and documents into a lower-dimensional
space using SVD (k = 2).
The projection of terms is given by UkΣk, and the projection of documents is given by VkΣk.

• Result: The projection of the term "Club" and "Doc3" are found to be close in the 2D space,
indicating relevance even if the exact word counts are sparse.
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