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Abstract

The lecture note of 2025 Fall Linear Algebra by professor 2842 (Amy Lee) .
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Chapter 0

Introduction

Lecture 1

0.1 Geometry 2 Sep. 13:20

e linear
o To study geometry with linearity
e In a different dimension:

— In 2D: lines
— In 3D: planes
— In nD: hyperplanes

0.2 Abstract Algebra

Definition 0.2.1 (Linear Algebra). Here is the definition of Linear algebra.

e Algebra is the study of basic "mathematical structure."
e.g. Group, Ring, Field, ...etc.

o Linear Algebra studies one of the structures called vector space.

Note. Followed by logical deduction from the basic definition, we can derive some theorems.

0.3 Applied Science

e Mathematic: ODE, PDE.
e Linear Programming: developing during World War II

e Imange Processing, Computer Vision, Computer Graphic, etc.



Chapter 1

Matrices and Gaussian Elimination

1.1 Introduction

The central problem of Linear Algebra is the solution of Linear Equations. The most important and

simplest case is when the # of unknowns equals to the # of equations.

Note. There are two ways to solve linear equations:
o The method of elimination (Gaussian Elimination)

o Determinants (Crammer’s Rule)

1.1.1 Four aspects to follow

(1) The geometry of linear equations.

| Note. n =2, =3 —  higher dimensional space.

(2) The interpretation of elimination is a factorization of the coefficient matrix.

Definition. Some notation to define:

Definition 1.1.1 (Scalar, Matrix, Vector).

a,B,v: scalar
Az =b A,B,C: matrix
a,b,c: vector

Definition 1.1.2 (Lower/Upper triangular matrix).

L : lower triangular matrix
A=LU
U : upper triangular matrix

Definition 1.1.3 (Transpose/Inverse).

AT /A1, AT . Transpose of matrix A
A~!: Inverse of matrix A




Lecture 1

(3) Irregular case and Singular case (no unique solution):

| Note. no solution or infinitely many solutions

(4) The # of operations to solve the system by elimination

1.2 Geometry of Linear Equation

Example. Consider the linear equation below:
20 —y =1
r+y =95
e approach 1: row picture — two lines in plane
5
(z,y) = (2,3) - (2,3) is the intersection of two lines
5
0

e approach 2: column picture

Figure 1.1: Row Picture

A

Figure 1.2: Column Picture

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION



Lecture 1

Lemma 1.2.1 (Linear Combination).
2 " -1 1
€T =
1) 7Y\ 5
. . . 2 -1 1
To find the Linear Combination of <1> and < 1 > to reach <5>

Note. A vector is a n x 1 array with n real numbers, ¢, is

C1
Cn
But in the text, we use
(Cl’ DEEY , cn)
to represent.
Definition. Here are some operations on matrix:
Definition 1.2.1.
C1 - C1
« = 5 a€eR
n nx1 @ Cn nx1
Definition 1.2.2.
C1 dl C1 + d1
S Bl B :
Cn dy, cn +dy, ol
Definition 1.2.3.
yeR
2 Y1
yeR® = y= y1,92 €R
Y2 2x1
n
yeR = y= |y Y1,92,y3 €R
Y3/ 31

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION
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Example. Consider the linear equation below:

2u+v+w
4u — 6v

—2u + Tu + 2w

e Row picture

(u’ ,U, w) = (17 1’ 2)

Question. How to extend into n-dimensions?

Answer. Consider the following steps:

Then we can find the final intersection.

e Column picture

2 1 1 5
u|l 4 | +v|-6|F+w]|0]|=]-2
-2 7 2 9

RHS is a linear combination of 3 column vectors.

Theorem 1.2.1. Solution to a linear equation:

Lemma 1.2.2. in n-dimension, a line require (n — 1) equation.

Each equation represents a plane or hyperplane.

The first equation produces a (n — 1)-dimension plane in R"

— The second equation produces another (n — 1)-dimension plane in R™
Their intersection in smaller set of (n — 2)-dimension

- n-3)>n—-4) = —3—2—1— point

2u+v+w =5
<~ 4u — 6v = -2

—2u+Tu+2w =9

(intersection of to points) = (coefficient of linear combination)

row pic.

column pic.

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION
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1.2.1 Singular Case

(1) Row Picture: In 3D case, they didn’t intersect at a point.

e Case 1:

e« Case 2:

e« Case 2:

o Case 4:

two parallel
2u+v+w =5
du+2v+2w =9

three plane perpendicular (1)

U+ v+ w =2 - (1)
2u + 3w =5 (2
utv+4dw =6 --- (3)

RHS= (1)+(2)=(3) ; LHS= (1)+(2) # (3)
three plane have a whole line in common.

u+v+w =2--- (1)
2u+ 3w =5 (2)
utv+4dw =7 --- (3)

RHS = (1) + (2) = (3) ; LHS= (1)+(2) = (3)

three parallel

(2) Column Picture:

1 1 1
ul|l24+v |0l 4+w]|3]=0b
3 1 4

In the case above, three vectors are linear combination to each other, i.e. three vectors share the

same plane.

o Ifb=

o Ifb=

vector share a common plane), it must be singular case.

, which is on the plane = too many solution to produce b.

, which is not on the plane = no solution.

S Ot N N Ot N

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION
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1.2.2 Fundamental Linear Algebra Theorem (Geometry form)
Theorem 1.2.2 (Fundamental LA Theorem). Consider a linear system
Az =b, AcR™" zecR" beR™

If the n hyperplanes have no only one intersection or infinitely many points, then the n columns lie

in the same plane. (consistency of row picture and column picture)

Notation. Logic notation:
o If ..., then : =

o If and only if : &

Lecture 2

1.3 An Example of Gaussian Elimination

Example. Here is a linear equation.

2u+v+w =¥
4u — 6v =-2
—2u+Tv+2w =9

2] 1 1 5 2 1 1 5 2 1 1 5
4 -6 0 —2|=|o0 -2 —12|= 0 -8 -2 —12| 'pivot'
-2 7 2 9 0 8 3 14 0 0 2

Then we get w = 2, we can plug in the equation i.e.

2u+v+1lw=>5
—8&v —2w = —12 — Forward Elimination

w=2

Then we substitute into 2nd, 1st equation to get v = 1 and u = 1 = Backend Elimination

Note. By definition, pivots cannot be zero!

Question. Under what circumstances could the elimination process break down?
Answer. Here are some situations.

e Something must go wrong in the singular case.

e Something might go wrong in the nonsingular case.

A zero appears in a pivot position!

If in the process, there are nonzero pivots, then there’s only one solution. ®

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 9
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Example.
2 1 1 5
4 —6 0 -2
-2 7 2 9

(1) If a3 =0 = nonsingular
(2) If agza =0 = nonsingular

(3) Ifag3=1 = singular

Question. How many separate arithmetical operations does elimination require for n equations in

n unknowns?

Answer. For a single operation.

a single operation = each division & each multiplication-subtraction

®
« FE:
r x xr =
r x r =
9 nd—n n?
nn—1)+n-1n-2)+---+(1°-1) = 3 Ngsteps
« RHS: )
-1
(n—1)+(n—2)+---+1=%~%steps
 BF: )
1
1+2+-~-+n=n(n2+ )N?S‘neps

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 10
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1.4 Matrix Notation and Matrix Multiplication

2u+dv+ 2w =2 2 4 _9 )
4u + 9v — 3w =8 == ul|l 4 |+v] 9 |+w|-3|=]38
—2u—3v+Tw =10 —2 -3 7 10
We can rewrite it in the below form.
2 4 =2 u 2 -1
A= 4 9 -3 , T=|wv , b=128 == =] 2
-2 =3 7 3x3 W/ a1 10 3x1 2 3x1
coefficient matrix unknowns RHS solution

Az

I
o

Definition 1.4.1. An m X n matrix, A,,x, over R, is an array with m rows and n columns of real

numbers, which can be written as

ai a2 - Qln
azy Qg2 - G2p 1 : index of row
A= ] , where a;; € R,
: 7 @ index of column
am1 Am2 T Amn,

. is called the dimensions (size) of A = dimension of a ()3x5 is 3 X 5

is called the elements/entry/coefficient of A
o Addition: A = (aij)an, B= (bij)mxn

A+ B = (aij + bij)mxn

° Multiplication: A = (a‘ij)’eru B — (bij)an
AB = (Cij)'mxr' 5 Where C” = Za’ik} bk]
k=1

e Scalar Multiplication:

aA = (aaij)mxn

Am><n Tnx1 = bm><1

In particular, if

AisxnBnx1 =V -w= ()1><1~

Then it’s the inner product of vector v and vector w

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 11
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Example.
2 4 -2 -1 2-(=1) 4-(2) —-2-(2 2
Az =14 9 -3 2 |=14-(-1) 9-(2) -3-(2)| =
-2 3 -7 2 —-2-(=1) 3-(2) -7-(2 22
2 4 -2
(-1 4 | +2[9]|+2]| 3
-2 3 7

(1) by row: 3 inner product

(2) by column: a linear combination of 3 columns of A

Example (1A). Az is a combination of columns of A
1
T2

Amxnnxs = (A1|Az] | 4r)

Ln

=$1(A1)+1‘2(A2)++$n(14n) = Zaij Zj
j=1

mx1

1.4.1 The Matrix Form of One Elimination Step

Definition (1B). Matrix form

Definition 1.4.2. zero matrix:
0 --- 0
O =] '..
0 --- 0
Definition 1.4.3. identity matrix:
1 -~ 0
Amxnln = Amxn
I= = In = Inxn;
0 1 Amxn = AmxnIn

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 12
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Definition 1.4.4. elementary matrix (elimination matrix):
1 0 0
0
Eij=|: ¢ : multiplier
—¢ . 0| ith row
0 1
jth column
B A —L 1 +— ith = (i-th row) + (—¢)(j-th column)
v +— jth = create zero at (i, j) position!

Example.
1 0 O 2 4 =2 2 4 =2
—2 1 0 4 9 —3 = 021 9 —3
0 0 1 -2 -3 7 -2 -3 7
E2 A EA

Note. Here is two properties

1. Ar =0 — EUAI = Eijb

1.4.2 Matrix Multiplication
(1) The (i, 7)-th entry of AB is the inner product of the i-th of A and the j-th of B.

(2) Each column of AB is the product of a matrix A and a column of B

= column j of AB = A times j-th of B
= linear combination of columns of A

:ble 1+b2jA.2+"'+bnjA.n

any numbers

5 0

3 1 1 16 1 1
-1 0

2 0 -1 8 0 -1
2 1

A2><3 C'2><3

16 3 1 1
1st column of AB = (8) =5 <2> +(=1)- <0> 4+9. (_1>

Example.

[NCREEE
I

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 13



Lecture 2

(3) Each row of AB is a product of a row of A and a matrix B.

— i-th row of AB = of A times B.
= linear combination of rows of B

=anBj. +ai2By. + -+ ainB,,.

Theorem 1.4.1. Let A, B and C be matrices (possibly rectangular). Assume that their dimension

permit them to be added and multiplied in the following theorem

(1) The matrix multiplication is associative
(AB)C = A(BC)
(2) Matrix operations are distributive
AB+C)=AB+ AC
(A+ B)C =AC + BC
(3) Matrix multiplication is noncommutative
AB # BA in general

(4) Identity Matrix
AanIn = InAan = Anxn

Example.
1 0 0 1 0 0 1 0 0
E=|[-2] 1 0, F=|l0 1 0], G=f0 1 o0
21 31 32
0 0 1 0 1 0 1
(1)
1 1
£31: -2 1 0 E]gg— -2 1
1 1
(2)
1 0 0
23 -2 1 3%21
0o -1 1
(3)
1 0 0 1 0 0
Gre=|—2 1 o] [ prg=|—2 1 o0
3 -1 1 1 -1 1
"right order"

Note. The product of lower triangular matrices is a lower triangular matrix.

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 14
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Lecture 3
. 16 Sep. 13:20
1.5 Triangular Factors and Row Exchanges ep
Lec =
= LUzx=b =
Uz =c
Example.
2 4 -2\ [u 2
Ar=1|4 9 —3||o|=|8]=0
—2 -3 7 ) \w 10

Remark. ¢: multipliers
E;;(0) : (i-th row) + (=€) (j-th column)

2 4 -2 2 2 4 -2 2 4 -2 2
Ro+(—2) R4 R3z+(—1)R2 .
4 9 -3 8 W 07 1 1 4 EEE— 0 1 4 pivot
3+(1) R4
-2 -3 7 10 0 1 5 12 0 0s 8
1 0 0 1 0 0 1 0 O
E21(2) :E: —2 1 0 5 E31<71) :F: 0 1 0 5 Egz(l) :G_ 1 0
0 0 1 1 0 1 -1 1
i.e.
2 4 -2 U 2
E21E31E32Al‘ = 0 1 1 v =Uz=c= 4 = E21E31E32b
0 0 8

Question. How can we undo the steps of Gaussian Elimination?

E'FIGTIGFEA=A=E'F G U= LU ie. A= LU

factors of A

1 0 0 1 00 1 0 0
El=|-(-2 10|, F'=] 0o 10|, G'=1o0 1 0
0 0 1 —(1) 0 1 0 —(—1) 1
0 0
E7'Flgt=]12 1 0
101

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 15



Lecture 3

1.5.1 Triangular Factorization
Theorem 1.5.1. If no exchanges are required, the original matrix A can be written as
A=LU

o The matrix L is lower triangular with 1’s on the diagonal and the multipliers ¢;; (taken from
elimiation) below the diagonal.

e The matrix U is the upper triangular matrix which appears after forward elimination and
before back-substitution; its diagonal entries are the pivots.

Example.
2 -1 -1 1 0 0 2 -1 -1\ = #&#2
0 -4 2 |=1]0 1 0 0 —4 2
6 -3 0 3 0 1 0 O 4
2 0 0 1 -1/2 -1/2
=0 —4 0 0 1 —1/2
6 0 3 0 0 1
Question.
1 -1 0 0
4 5 265 1 2 1 0
= 5 AZ —]. 4 —2 3 A:
L2 0 -1 2 -1
1 2 3
0 0o -1 2
"triangular matrix" A =& ¥ A4
Answer. ®

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 16
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1.5.2 One Linear System = Two Triangular Systems
Ar=b = Uzr=c& Lc=b = A=LU

Remark. The LU form is unsysttematic in one aspect. U has pivots along its diagonal where L

always has 1’s.
‘We can rewrite U as

Uyl U2 vt Ulp up 0 o0 1 wig/uin -+ win/un
0 u9o Uy, 0 w9 0 0 1 Ugp /U2
U = . . . =
0 0 Unn 0 0 Unn 0 0 1
Example.

(1 oo\ (Bl 4\ (1 o\(3 o0)\[1 4/3
“\13 1) \o |2/3]) \1/3 1)\o 2/3)\0 1

L D U
Theorem 1.5.2. If
A= L1D1U1 and A = L2D2U2

then
Li=1Ly,Dy =Dy,U; =0,

i.e. if A has LDU decomposition, then it is unique.

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 17



Lecture 3

1.5.3 Row Excahnge and Permutation Matrices

(Permutation matrix P;;)

10
P=10 0
0 1

o = O

Note. Permutation matrix is also an elementary matrix.

Example. Here are some of the example:

10
0 0\ (1
01 0/ \5 3
20
10 2 41 2 41
PA=[0 0 1||0 0 3|=|0 6 5| [Re¢ Rs]
010/ \o 65 00 3
30
2 4 1\ (1 00 2 1 4
AP= [0 0 00 1|=f03 0] [Ceds]
06 5/ \0 10 05 6

Note. For the permutation matrix:
1° PA: Performing row exchange of A

2° AP: Performing column exchange of A

u
3° PAx = Pb; Should we permute the component of z = | v | as well? NONONONONO!!!
w
Example.
0 a b
A=10 0 ¢ Axr=b
d e f
(1) if d = 0, the problem is incurable. The matrix is singular.
d e f d e f
(2) lfd#O,PlgA: 0 0 c ;ifa;éO,ngplgA: 0 a b
0 a b 0 0 ¢

Py3Pi3 # Pi3Ps3

1 3 3 1 1 2
row 2—2—1 2—+3—+3
3 1 2 3 2 1

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 18



Lecture 3

Theorem 1.5.3. We seperate into two cases:

o In the non singular case, there’s a permutation matrix P that reorders the rows of A to avoid
zeros in the pivot positions. In this case,

(1) Az = b has a unique solution.
(2) It is found by elimination with row exchange

(3) With the rows reorders in advance, PA can be factored into LU (PA = LU)

o In singular case, no reordering can produce a full set of pivots.

Example.
L 1IN gplfogy=n (1 1 1 1 11
A=1]1 1 3 m) 0 0 2 ﬁ) 0 3 6|=U
2 5 8 0 3 6 0 0 2
1 0 0 1 0 0
L=1]1 1 0] (Thisis WORNG) =12 1 0
2 0 1 1 0 1

To summarize: A good code for Gaussian Elimination keeps a record of L,U and P. They allow the

solution (Az = b) from two triangular systems. If the system Az = b has a unique solution, they we say:
1° The system is nonsingular or
2° The matrix is nonsingular

Otherwise, it is singular.

1.6 Inverse and Transpose

Definition 1.6.1. An n x n matrix A is invertible if 3 an n x n matrix B> BA=1= AB

Theorem 1.6.1. If A is invertible, then the matrix B satisfying AB = BA = I is unique!

Proof. Suppose dc# B> AC=CA=1
B=BI=B(AC)=(BA)C=IC=CieB=C

we call this matrix B, the , and denoted as |

Note. Not all n x n matrices have inverse.
e.g.

0 0 1 1
0 0 11
z#0

2° if Az = 0 has a nonzero solution, then A has no inverse!

=AY Az)=A710=0 (=)

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 19



Lecture 3

Note. The inverse of A1 is A itself. i.e. (A7)~ = A.

b
Note. If A = (a)1x1 and a # 0, then A™' = (1). The inverse of <a d) is
c
2x2

1 d —=b\ .
det(4) (—c a) if det(A) #0

Note.
d -+ 0 1/dy - 0
A= di 0, Vi =— A" =

0 - d, 0 - 1/d,

Proposition 1.6.1. If A and B are invertible, then

e (AB)"'=B"14"!

o (A1Ay-- Ay t=A71 . AJIATT

1.6.1 The Calculation of A~!: Gaussian-Jordan Method
A- A7t =T

Ananan = In

- Anxn(Bl|BQ||Bn)n><n = (el|€2|"'|en)n><n
g (ABI|AB2|"'| )n><n = (€1|82|"'| Jnxn
— ABy =¢1; ABy=¢9; ---; AB, =e, —— n linear systems:Az = b

Definition 1.6.2 (Gaussian-Jordan Method). Instead of stopping at U and switching to back substi-

tution, it continues by subtracting multipliers of a row from the rows above till it reaches a diagonal
matrix. Then we divide each row by corresponding pivot.

L~1 _ =" _
(Al === (UL Z=— ({14

2 -1 0]1 00 -1 0 |1 0 0
1 2 —1]o 10| — | o [32] -1]12 1 o0
0 -1 20 0 1

0 0 [4/3]|1/3 2/3 1

10 0[3/4 1/2 1/4
— o Bl -1z 1 0| — 01012 1 12
0 0 4/3[11/3 2/3 1 0 0 1|1/4 1/2 3/4

3/4 1/2 1/4

At =1L 1 1p

s 1)z 3/

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 20



Lecture 3

1.6.2 Invertible = Nomnsingular
Question. What kind of matrices are invertible?
Answer. Here are the example:

1° nonzero pivot Chl Ch4

2° nonzero determinants Ch4

3° independent columns (rows) Ch2

4° nonzero eigenvalues Ch5

which will in the whole course ®

Suppose a matrix A has full set of nonzero pivots. By definition, A is nonsingular and the n systems
Axl = €1, ALEQ = €2, - 7Axn = €n
can be solved by elimination or Gaussian-Jordan Method.

Row exchanges maybe necessary, but the columns of A~! are uniquely determined.

Ax=b PAx = Pb
PAQL‘Z :Pei

{P@l,Peg,"' aPe’rL}: {617623"' 7en}

Note. Compute A~
1° A(zq] - |en)=T=(e1] - len) < Ax;=¢€;,i=i--'n

2° Gauss-Jordan Method: (A |I) — (1] A7)
Question. We have found a matrix A=! > AA='=1. Butis A='A=1
Answer. We can do this by recall.

As previously seen. Recall that every Gauss-Jordan step is a multiplication of matrices on the

left. There are three types of elementary matrices:

1° | E;;(€) | : to subtract a multiple £ of j row from ¢ row.

2° : to exchange row ¢ and j

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 21



Lecture 4

0 1 0 1
= DEEPFEFA=] =

These are the operation of A~!

Theorem 1.6.2. For nonsingular and invertible:
e Every nonsingular matrix is invertible.

e Every invertible matrix is nonsingular.

Lecture 4

1.7 Transpose AT

e (A+B)T =47 + BT
« (ATYT =4

« (AB)T = BTAT

o (AT =(AN)!

Proof. Here is the proof

2° ((AB));; = (AB);; =

n
E a;1brq
k=1

30

TATY. . _ N\~ 3T, T _ \\" _
(BYA%)ij = >0y bitjak’j =2 p=1 beiaje =

1 0
0
d © | — ith row

: 0

0 1

1 0 dy 0

1 do

0 dn 0 dyn

A~'A =T - we have a left inverse!

Theorem 1.6.3. A square matrix is invertible <= it is nonsingular

Proposition 1.7.1. Here are the proposition of transpose

1° ((A+ B)")ij = (A4 B)ji = Aji + Bji = (AT + BT),;

n
E ajebe;
—1

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 22
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Lecture 4

Definition 1.7.1. A symmetric matrix is a matrix which equals its own transpose. i.e. 4 = AT

21YESS4NOOOYES
1 3 1 5 0 0

Note. A symmetric matrix is not necessarily invertible. If it is invertible, then its inverse is sym-

Example.

metric.

Theorem 1.7.1. If A is symmetric and if A can be factored as LDU, then A = LDUT

Proof. Here is the proof.
1° A=AT A=LDU = AT = (LDU)T = UTDTLT = A= LDU
2° By theorem 1.5.2, the theorem is correct.

LDU is unique if they exist. |

CHAPTER 1. MATRICES AND GAUSSIAN ELIMINATION 23



Chapter 2

Vector Spaces and Linear Equation

2.1 Vector Spaces and Subspace

To answer the basic questions about the exis{;en(:e and uniquness of the solution of Ax = b, we need the
o 20
concept of vector space.

Field = Vector Space = Solution of Az =b

Definition 2.1.1 (Field). Let F be a set with two operations "+" and "+" i.e.

+:FxF —F
c:FxF —F

and +, « are well-defined functions. If the system [(F,+, *)| satisfies the following conditions, the

F is called a |Field|.

For a,b,c € F
1) (a+b)+c=a+(b+c)
(2) a+b=b+a
(3) 30€ F35a+0=04+a=a #Ertk (lst operation)
(4) Vae F, 3(—a) e F3a+(—a)=0 R T%E (lst operation)
(5) (a-b)-c=a-(b-c)
6) a-b=b-a
(7) 31e F>a-1=1-a=a #Azst% (2nd operation)
(8)Va#0€eF,3ateF3a-al=atl-a=1 &% (2nd operation)
(9) a-(b+c)=ab+ac Distribution Law

Example.
R (YES) Q@ (YES) Z (NO) C (YES) N(NO)

(real) (rational) (integer) (complex)
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Definition 2.1.2 (vector space). Let V be a set and F be a field. |V is a vector space over F'| if

addlition and multiplication by scalar are defined on V and they satisfy.
o 20

+:VxV —V
XV —V

addition is associated

(A1)
(A2) addition is commutative

(A3) Fzero vector e V304+v=0v+0, YoeV
(Ad) YveV, I(—v)eV 3 (—v)+v=0

Ml) 1-v=v,veV, 1eF

(M2) (Ap) - v=ANuww)veV, ueF

(M3) A(v1+v2) =Avy + Avg v, 03 €V, A€ F

M4) A+pv= +poveV, \peclF

.1.1 Algebraic Rules of Vector Algebra

Question. n € N, R" /R (R™ over R) is a vector space?

Answer. YES ®

Example.
c"/C, C"/R, R/R

Question. Msx2(R)/R is a vector space?

(¢

Answer. YES ®

a,b,c,deR}

Question. V is a vector space?

V = {all 3 x 3 symmetric matrices over R}

Answer. YES ®
QUeStiOI’I. ROO/R, R = {((117(127 ...... ) | a; € R}
Answer. YES ®
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Question. Let V = {f | f is a real-valued function defined on [0,1]} define (rf)(z) =7-f(z), r € R

Answer. YES

(zero vector) = (zero function)

ie. f(z)=0,Vz €[0,1]

Question. V' = {all positive R}

Tty =<
4 Y , is Vav.s. over R

zC

cox

Answer. YES

1° (Al) (z+y)+z=x+(y +2)

2° (A2) (z+y) =ay =yz = (y+ )

3° (A3) zero vector: z +1=x

4° (A4) x + % = zero vector = 1

5° (M3) Az +y) = (z +y)* = (zy)* = 2y = () (hy) = Az + My

6° (M4) A+ p) -z =2 =g> . gl = dp - pz = Az + px

All conditions apply.

CHAPTER 2. VECTOR SPACES AND LINEAR EQUATION
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2.1.2 subspace

Definition 2.1.3 (subspace). A of a vector space (V,+, +) over F is a nonempty subset

of V.5 (W, +, «) itself is a vector space over F. W is a subspace of V over F if and only if W is
closed under addition and scalar multiplication.

Question. Does the zero vector belong to subspace?

Answer. YES

W = {zero vector} is the smallest possible vector space. ®

Remark. If W; and W5 are subspaces of V over F. Then Wy N Wy#0)
Note. If W is a subspace of V/F, then we use notation |[WW < V|.

Question. V = R?/R (zy-plane), What are the subspace of V?
Answer. Here are all subspace of V'
(i) origin (one point)
(i) R2/R<V
(iii) all lines through origin
(iv) 2nd-guadant (no zero)

There are much more example. ®

Question. V = M, x»(R)/R

S = {n x nsymmetric matrix}
U = {n x nupper triangular matrix}

L = {n x nlower triangular matrix}
Answer. YES, YES, YES ®
Theorem 2.1.1 (). Let V' be a vector space over F. A nonempty subset W of V is a subspace of
V, if and only if for each pair x,y € W and o € F"

1° The zero vector € W.

2° ar+yeW
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2.1.3 Column Space of A

Example.

Amxn Tnx1 = bmx1

The first concern is to find all attainable r.h.s. vector b. For example:

1 4 by 1 4
U

2 5 < ) =|by|=ul|2|+0v]|5
v

3 6 b3 3 6

Theorem 2.1.2. The system is solvable if and only if the vector b can be expressed as a combination
of columns of A

Note. The columns of A,,x, are vectors in R™, the rows of A,,x., are vectors in R".

Example. Let C(A) = {all combinations of columns of A}. Then, C(A) is a subspace of R /R.
Proof. If band & € C(A), Jx,2' 5 Ax =b & Ax' =V

VaeR, A(az+12') = Alaz)+ A(x') = Aax + Az’ = ab+ b € C(A)

— C(A) <R™/R n

Definition 2.1.4. C(A) is called the of A. Thus if b € C(A), then Az = b is solvable.

° Amxn =0 — C(A) = 0m><1

e Apsn=1, — C(A)=R™

Lecture 5

2.1.4 Nullspace of A 30 Sep. 13:20

Definition 2.1.5. Let N (A4) = {# € R" | Az = 0}, then N (4) < R"/R. Then N(A) is called the

Proof. We proof it with the Theorem 2.1.1
o zero vector is in the A(A)
ez, ¥ eN(A) = Az =0, Ax' =0
Alz+2')=Az+ A2’ =040=0 = z+2' € N(A)

Alaz) =aAz=a-0=0 = ax e N(4),Ya e R .. N(A) <R"/R

Note. The system Az = 0 is called a homogeneous equation. (#=k)
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Remark. The solution set of Az = b is NOT a subspace of R"/R
z, 2 — Ax=0b, Az’ =b

Alx+2')=Av+ Ax' =2b#b

Example.
1 4
2 5 <u>= 0] = N(A):{<O>}
3 6 v 0
Example.
1 4 5 0 t
2 5 7|l [v|=1]0 = N4)= t |,te(—o0,00)
3 6 9 0 —t

C(A) = {all combinations of columns of A}

= column space of A <R™/R

N(A) ={z e R" | Az = 0}
= null space of A <R"/R
2.2 The Solution of m Equations in n Unknows
For ax =b, a,b,x €R
N s b .
(i) ifa #0 = z = —, unique
a
(ii) if a=0,b=0 = infinitely many solutions.

(iii) f a=0,b=0 = no x exists.

Now, consider Az = b, if A is a square, then (i), (ii), (iii) may occur.
(i) A7! exists — z = A~'b, unique
(ii) A is singular (undetermined case)

(iii) inconsistent case.

With a rectangular matrix A, x = A~'b will never happen!

CHAPTER 2. VECTOR SPACES AND LINEAR EQUATION
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Definition. Here is the definition of two similar jargon.

Definition 2.2.1 (row echelon matrix). An m x n matrix R is called a [row echelon matrix| if

(i) the nonzero rows come first and the pivots are the first nonzero etries in those rows.
(ii) below each pivot is a column of zeros
(iii) each pivot lies to the right of the pivot in the row above.

e.g.

o O ®
S ® ®
S ® ®
® ® ®
o

Definition 2.2.2 (row-reduced echelon matrix). An m x n matrix R is called a
if

(i) the nonzero rows come first and the pivots are the first nonzero etries in those rows;

pivots are normalized to be 1.
(ii) Above & Below each pivot is a column of zeros

(iii) each pivot lies to the right of the pivot in the row above.

e.g.
[ o ® 0 @
0 [1] ® 0 @
0 0 0 [

Theorem 2.2.1. To any m X n matrix A, there exists a permutation matrix P, a lower triangular
matrix L with unit diagnal and an m X n echelon matrix U 5 PA = LU
OR

Every m x n matrix A is row equivalent to a row echelon matrix.
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e Case 1. Homogeneous Case. b,,,x1 =0

Ar =0

We call the component of x , which correspond to columns with pivots the basic variables; and
these correspond to columns with pivots the free variables.

0 basic variables: u,w
0

3
3]
0

U
3 2

v
0 1
0 0 w free variables: v,y
Yy

The basic variables are then expressed in terms of free variables.

3w+y=0 w=—1y
=
u+3v+3w+2y=0 u=-3v—y
U —3v—y -3 -1
v v 1 + 0
xr = = = Yy
w —%y 0 —%
Y Y 0 1
-3
1 =1
— is obtain from z by setting
O y =
0
1
0 1. . . =0
— 1 | is obtain from z by setting
~3 y=1
0

n m
Theorem 2.2.2. If a homogeneous system A,,x,2 = 0 has more unknows than equations (m
< n), it has a nontrivial solution.

(Amxn) —> (Amxn)

at most m pivot, at most m basic variables, at least (n — m) free variables.

Note. The nullspace is a subspace of the same as the number of variables.
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e Case 2. Inhomogeneous Case: b # 0

Arx=b — Uz =c where c = L™

1 3 3 2 b1
T2
2 6 9 5 = | by
x
-1 =330/ |7 b
T4
U
3 3 2 by
v
- 0 0 1 = by — 2bq —> b3 —2by+5b; =0
w
0 0 0 O bz — 2bz + 5b;
Y
We know that Az = b is solvable = b € C(A)
— 1 & 3: basic variables
1 3
— C(A) = the set of combinations of | 2 | & | 9
-1 3
by 5
, which is also by bs —2by +5b1 =0, L | —2
b3 1
Example.
1
b=15
5
3 3 2\ (" 1 .
v w=1-3y
0 O 1 =13 ==
o 0o 0o of|" u=-2-3v-y
Yy
U —2—-3v—y -3 -1
v v 1 0
T = = = + v +y 1
Y Y 0 1
solution to Az=0 (nullspace)

Lgeneral = Tparticular + Lhomogeneous; Lg — Lp — Th
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Generally, the general solution is fills a two-dimensiona; surface (but NOT a subspace since it doesn’t

contain the zero vector (origin))

It is paralled to the Nullspace of A

line of solutions of Az = b

(Az, =) Tg=2xp+ L.}, (Azy, =)

Y

nullspace of A

0

2.2.1 Steps to oobtain the solution to Ax =b
(i) Reduce Az =b to Uz = ¢ to determine basic/free variables.
(ii) Set all free variables to zero to find particular solution, z),

(iii) set RHS = 0. Give each free variables 1 others 0, in terms, find the hoomogeneous sloution, xy,

= Tg=xptTp

Definition 2.2.3 (rank). if there are r pivots, there are r basic variables and n — r free
variables. The number of pivots, 7, is called the of the matrix.

Theorem 2.2.3. Suppose elimination reduce A,,xx = b to Ux = ¢ and there are r pivots and the

last (m —r) rows of U are zero. Then there is a solution only if last (m — ) elements of ¢ are zeros.

e If r = m, there’s always a solution. The general solution is the sum of particular solution and

a homogeneous solution.

o If r = n, there are No free variables and the null space contains © = 0 only. The number r is
called the rank of A.

Two extreme case: A,,xnZ =0
(1) If r = n — No free variables - N(A) = {z € R" | Az =0} = {0}

(2) f r=m — Nozerorowsin U — C(A) =R"™ = 3 solution for all b

2.3 Linear Independence, Basis and Dimension

In the elimination process, we refer to the number, r, of pivots as the rank of A. This definition is purely
computational rather than mathematical. We shall give a formal definition later.

Now we shall disscuss the following four ideas:

(i) linear independence or dependence

(ii) a subspace
(iii) for a subspace
(iv) of a subspace
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Definition 2.3.1. Let V be a vector space over F. A nonempty subset S of V is said to ve

|linearly dependentl if there exist distinct vectors vy, va, -+ , v, in S and scalar ag, ag, -+, a, in F,

not all of which are zero >

a1vy + vy + -+ apv, =0

A set which is not linearly dependent is called linearly independent. If S = {vy,v9, - ,v,} then

we say that vy, ve, -+, v, are linearly dependent/independent.
Lecture 6
Remark (1). To show that vy, - ,v, are linearly independent. We vaerify if

c1v1 + ey + - -+ + cpv, = 0 for some ¢; € F

then ¢; must be zero for all 4.

Example. In R?, if v;, v, are not colinear(3:4%) then they are linearly independent.
v1(# 0) and vy (# 0) are linearly dependent <= v1, vy are on the same line

Any 3 vectors in R? are linearly dependent.

Remark (2). If v; = vy, then the set {v1,---v,} is linearly dependent.

avy + (—a)ve =0
Remark (3). Any set which contain a linear dependent subset is linearly dependent.
Remark (4). Any subset of a linearly independent set is linearly independent.
Remark (5). Any set which contain 0 vector is linearly dependent.

Example.

A=1_4 4 2 1
-2 0 -4 0
V1 v2 V3 V4

The columns of A are linearly dependent.

11 + cov2 + c3vg + cqvg = 0

&1

C2

(Ul V2 U3 1}4) =0 = 4v1 + (73)’02 + 2v3 4+ 0vy =0

C3

Cq4
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Example.
1 0 0 0
1
e 0 0 O
0 0 1 0
-1 -1 -1 1

The columns of A are linearly independent

Note. We showed that the nullspace of A is {0} only. That is exactly the same as saying the

columns of A are linearly independent.

Example.

U=|0
0

=
©c o w
o |eo| w
o =

Proposition 2.3.1 (2F). The r nonzero rows of echelon matrix U are linearly independent, and so

are r columns that contain pivots.

Example. In R", ey, €9, -+ , e, are linearly independent.
To summarize: To check any set of vectors vy, ve, - ,v,(€ R™) are linearly independent.
Let A = (v1|v2| -+ |vn)mxn, then solve Az, 1 = 0.

1° if 3 solution x # 0, then v;’s are linearly dependent.

2° if there are no free variables (i.e. rank(A) = n), nullspace = {0} then v;’s are linearly independent.

3° if rank(A) < n, then v;’s are linearly dependent.

4° special case: if v; € R” and n > m, then v;’s are linearly dependent.

Proposition 2.3.2. A set of n vectors in R” must be linearly dependent if .

CHAPTER 2. VECTOR SPACES AND LINEAR EQUATION
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2.3.1 Spanning a Subspace

Definition 2.3.2 (2H). Let S be a subset vectors in V /F.

|The subspace spanned by S | is defined to be the intersection W of all subspaces of V' which contain
S.

When S is finite, S = {vy,- -+ ,v,}, we call W the subspace spanned by vy, -+ ,v, and denoted as
W = (v1,--- ,v,) or W = span(S) = (95).

Theorem 2.3.1. [The subspace spanned by a nonempty subset S] of a vector space V' is [the set T

of all linear combinations of vectors in S].

Proof. We need to show W =T.

Claim. W =T if and only if W C T and T C W.

o Let W be the subspace spanned by S, S CW (S A—=& A &4 0 vector FiA RAe A <).
So every linear combination of vectors in S isin W. = T C W.

T
(" W is a subspace which is a vector space)

« on the other hand, T is a subspace containing S.
(cz,yeT, aceF = ar+yeT)

So, W C T by definition = W =T.

(Intersection of all subspaces containin S) |
Example. C(A) = space spanned by columns of A.

Example. w; = (1,0,0), wy = (0,1,0), wz = (0,0,1), span a space R3.
wi = (1,0,0), we = (0,1,0), w3 = (=3,0,0), span a plane R

Note. Spanning involves the columns space, independence involves the null space.

2.3.2 Basis

Definition 2.3.3 (2I). A for a vector space is a set of vectors that satisfies
(i) it is linearly independent AND
(ii) it span the vector space

If the basis of V is finite, then V' is finite-dimensional (f-dim).

Remark (1). There’s one and only one way to write every v € V' as a linear combination of the basis

elements.
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Remark (2). In R™,

0
/l\
€; = 1 ith
: {
0 nx1

then {ey,:, e, } is a basis for R”. The basis is called the standard basis.
Vo = (z1, - ,xn) ER?, 2 = inei
i=1

The standard basis is not the only basis for R™. In fact, there are infinitely many bases for R™. For

any nonsingular matrix A, «.,, the columns of A are the basis for R™.

Example.
1 3 3 2 3 3 2
A=|2 6 9 5 — U=|0 o 1
—1 —3303><4 00003><4
The columus of U that contain pivots are a basis for C(U).
1 1
Note that C(U) is generate by | 0 | and | 1 |, which is a 2y-plane within R?.
0 0

Remark. C(U) is NOT same as C(A).

Theorem 2.3.2 (2J). Any two bases for V contain the same number of vectors. This number is
called the dimension of V.

Proof. Suppose vy,...,v,, and wq,...,w, are bases for V, and suppose m < n.

For j =1,...,n,

wj = a1;V1 + - + AV, for some a;; € F.

Let
ai; -+ Qin
az; -0 G2n
w=[wy,...,w,] =VA=Tv1,...,0n)]
Am1 o Amn

The matrix A is m X n with m < n. By Theorem 2C, 3 nontrivial C' such that AC = 0.

VAC =WC =0.

Hence the columns of W are linearly dependent. But the columns of W are basis elements, contra-
diction = m £ n.

Similarly, we can show that n < m, so we conclude m = n. |
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Theorem 2.3.3 (2L). Any linearly independent set in a finite-dimensional vector space V can be

extended to a basis. Any spanning set of V' can be reduced to a basis.

Proof. Let vq,..., v be linearly independent over F. Then (vq,...,v;) < V.
If (v1,...,vx) =V, then (vq,...,v;) is a basis of V. Otherwise, 3z € V such that z ¢ (vq,...,vg).
Then x, vy, ..., v are linearly independent. If not, 3¢ # 0, and Jaq, ..., ag, not all zero, such that

cr + a1v1 + agvy + - - + agvg = 0.

= = ciloqvl + cfla2v2 e R cflakvk.

= z € (vq,...,Vx), contradiction.
Then repeat the process, i.e. is (x,v1,...,v,) = V7 Since V is finite-dimensional, the process will
terminate after finite steps.
The 2nd half of the theorem can be proved similarly (exercise). ]

2.4 The Four Fundamental Subspaces

Usually there are two ways to describe a subspace

(i) a set of vectors that span the space.

(e.g. the column space of A,,xn, C(A4))

(ii) a list of constraints that imposed on a subspace.
(e.g. the null space of A,xn, N(A) = {z | Az = 0})

Here we will discuss four fundamental subspaces associated to A, xn

(1) the of A denoted by C(A)

(2) the of A denoted by N'(A)
(3) the of A the columns spaces of AT, denoted by C(AT)

(4) the |left null space| of A denoted by N'(AT), i.e. {y | ATy =0}

o If Apyxn, then C(A),N(AT) <R™ and N(A),C(AT) < R™.

2.4.1 Row space C(AT)

The of A (the subspace spanned by the rows of A), C(AT). For an echelon matrix, its r
nonzero rows are independent and its row space is r-dimensional.

Proposition 2.4.1 (2M). The row space of A has the same dimension r as the row space of echelon

form U of A, and they have the same basis.
c(AT) =cw™)

But in general, C(A4) # C(U).
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Lecture 7

2.4.2 Nullspace N (A) 21 Oct. 13:20

The nullspace of Ay xn, {2 | Az =0} = {z | Uz =0}

.". The nullspace of A is the same as the nullspace of U

Proposition 2.4.2 (2N). The nullspace A (A) is of dimension n — r
A basis of N(A) can be constructed by reducing to Uz = 0 which has n — r free variables corre-
sponding to the columns if U that do not contain pivots. Let each free variable 1, in turn, and

others 0, and solve Uz = (. The n — r vectors produced in this manner will be a basis of N'(A).

dim(N(A)=n—r
The N (A) is also called the |kernel of A|, ker(A), and its dimension is called the |nullity of A|.
ker(A) = N(A)

2.4.3 Column space C(A)

The R in R(A) stands for “range” which is consistent with the usual idea if range of f

Let £(2) = Amxn@nx1, the
« the domain of f is R”
« the range of f is {b € R™ | Az = b} = C(A) = R(A)
« the kernel of f is {z € R" | Az = f(z) = 0} = N(A) = ker(A)

If U is the echelon form of A, C(A) # C(U), but they have the same dimension. For U, the columns with
pivots form a basis of C(U). Then, the corresponding columns in A form a basis of C(A). Since the two
systems Ax = 0, Uz = 0 are equivalent and have the same solutions. A nontrivial solution  means a

linear combination of columns of U, hence the same linear combination of columns of A.
So, if the set of columns of U is independent, then so are the corresponding columns of A and vice versa.

To find a basis of C(A), we pick those columns of A, which correspond to the columns of U with pivots.

Proposition 2.4.3 (20). The dimension of the column space = rank r, which also equals the dimen-

sion of the row space.
.. # of independent columns = # of independent rows = r

or more formally,
rank(A) = r = row rank = column rank
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2.4.4 Left nullspace N(AT)
ATy = 0 =(y" A)T

NX My 1 nx1l 1xmmXn

(# of basic variables) 4 (# of free variables) = (# of variables) = n

| dim(C(A)) + dim(\'(A)) = # of columns of A |
For A", which has m columns, the column space of A” is the row space of A which has dimension
rank(A4). So,

dim(N(AT)) = m — rank(A)

ie.

dim(C(AT)) + dim(N (AT)) = # of columns of AT

Proposition 2.4.4 (2P). The left nullspace N (AT) is of dimension m — r
The left nullspace contain the coefficients that make the rows of A combined to a zero vector (linear

dependent).

To find y 3 yT A =0

Suppose that PA = LU — A =U

mXxn mXxXn
mXxXm

The last 17— rows of L™'P must be a basis for the left nullspace. ( .. the last 1 —r rows of L= P
are independent and dim(N(AT)) is m — » — it is a basis of N'(AT))

Theorem 2.4.1 (Fundamental Theorem of Linear Algebra). Let A be n arbitrary m x n matrix, then

dim(C(A)) = dim(C(AT)) = rank(A)

dim(N(A)) = n —rank(A4); dim(N(AT)) = m — rank(A)

C(AT) c(4)

dim r iy dim r

Column Space
all AZ

Row Space
all ATy

Rm

N(AT)

dimm —r

Figure 2.1: Fundamental Theorem of Linear Algebra
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Example. Find out the basis for the four fundamental subspaces of the matrix

1010 0 1 0
A=12 3 4 1| — U=|0 [1] 2/3 1/3| r=2
4 3 6 1 0 0 0 0
1° C(A)
0
B= 3 dim(C(A)) = r = 2
3
2° N(A)
X 0
T2
Az =0—Uz=0—U =10
3
0
T4
r1+23=0
$2+%$3+%1‘4=O
~1
-2
(a) 23=1,24=0— 1/3 = Vg
0
0
-1
(b) 23=0,14=1— 0/3 = Vg

1
Hence, B =N (A) is {v1,v2} and

dim(N(A)=n—r=4-2=2

3° C(AT)
10 1 0 Sy
U=10 1 2/3 1/3| =185, — B={S8],87}, dim(C(A"))=r=2
00 0 0 0
4° N(AT) — N(B)
1 2 4 2 4 0
Y1
293 = 0
|03 3| _ o o1y2:o Y1+ 23
1 4 6 0 0 0 " 0 Yo + 43 = 0
01 1 0 0 0 0
-2 —2
z=1—1-1 SB= -1 , dimN(AT)=m—-r=3-2=1
1 1

Check orthogonality
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Proposition 2.4.5 (2Q). We can find the existence and uniqueness of solution of Az = b.

o Existence of inverse:
The system Az = b has at least one solution z for each b iff the columns span R™ (r = m).

In this case,
I n x m “right” inverse C' > AC = I

This is possible only if m < n.

e Uniqueness of inverse:
The system Axz = b has at most one solution z for each b iff the columns are independent

(r =n). In this case,
dn x m “left” inverse B> BA=1

This is possible only if m > n.

Proof. We separetely prove the two parts.
o Existence:

Az = b has a solution for each b < beC(A),¥be R™ = C(A)=R™

Let eq,e0,--- , e, be the standard basis of R™.
Then d 1,29, - ,Zm D Ax; =¢;,Vi=1,2,--- ,m
Let C = (z1 | 22| | ), then AC = A(zq |22 |-+ | zm)=(e1 | e2 |- | em) = Im.

e Uniqueness:
Az = b has at most one solution for each b € R™

< Vb € R™,if b can be represented as linear combination of columns of A, then it is unique

Hence, proof is complete. |

Example.

4 0 0
A:( ) m=2,n=3,r=2 — dright inverse C 5 AC =1
2x3

0 5 0
10
1/4 0
4 0 0 . .
AC = 05 0 0 1/5] =1, = C isnot unique
€31 C32
20
1/4 0 10 0 100
0 1/5 (O 5 O) =10 1 0 impossible since LHS is 3 x 2
€31 C32 0 0 1
30
4 0 4 0 by
A,=10 5 m=3n=2r=2 —Ax=1> 0 5 <x1>: b
)
0.0/, 0 0 bs
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Note. The following statements about a square matrix A, «x, are equivalent:
(1) A is nonsingular (invertible)

(2) The columns of A span R", so Az = b has only one solution Vb € R™

(4) The rows of A span R"

(5) The rows of A are independent

(6) Elimination can be completed: PA = LDU with all d; #0
(7) 3A 15 AA L =A"1A=1,

(8) Determinant of A det(A)#0

(9) Zero is NOT an eigenvalue of A

(10) AT A is |positive definite| (iE %)

2.5 Graph and Network

skip

2.6 Linear Transformation

(3) The columns of A are independent, so Az = 0 has only one trivial solution 2 = 0

We have seen that a matrix move subspaces around. For example, A maps N (A) to the zero vector and

move all vectors into its column space C(A). Let A be an n x n matrix and x € R", so A transforms x

into Az € C(A).

2.6.1 Notation of Linear Transformation

Example. Here are some examples of linear transformations:

A= (C 0) A <x1> = <0x1> = <$1> (scaling by c)
0 ¢ X9 CT2 Z2

10

20

332) (rotation by 90°)
T

3° (
e >

(projection onto x1-axis)

= <x2> (reflection about z1 = x2)
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Lecture 8

Definition 2.6.1 (2T). Let V, W be vector spaces over a field F. A linear transform from V to W is 28 Oct. 13:20
a function T : V' — W such that preserves the operations on V and W, i.e.

Tu+v)=T(u)+T(v), Yuvel,;
T(cu) = T (u), VYueV,cel.

Example.
T:R*—R3

T: (xl,xg,mg) — ($2,$3,$1)

T is a linear transform.

Example.

A P,(R) = P,_1(R)

p(t) € Po(R), p(t) = ap + art + ast® + - -+ + ant™

See the attributes below:

d
AP = —(ag + art + at® + - + ant") = a1 + 205t + -+ napt" !

The nullspace of A is all constant polynomials.
C(AP) = P, 1(R)
the basis is {1,¢,t2,...,t" "1} and rank(C(A)) = n.

nullity(A4) + rank(A) = 1 4+ n = dim(P, (R)).

Example.

A= /t : Pu(R) = Ppy1 (R)

See the attributes below:

t 2 3 n+1
aqt ast ant
AP = ao + art + agt? + - + ant™) dt = agt + — + —— + - - -
/0(0+1+2+ + ant") ot + =5+

The nullspace of A is all constant polynomials.
N(AP) = {0}

The range of A
C(AP) =P, 41(R) — {constant}/{0}

Example.
T:R® =R

T: (x1,x9,x3) — 221 + 3x2 — 23, T; €R

T is a linear transform.
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Example.
T:R* >R

T: (x1,x2,23) — Qx% + 3w — 3, x; €ER

T is NOT a linear transform.
v T(x+y) #T(x) +T(y)

Theorem 2.6.1. Let T': V — W be a linear transform, where V, W are vector spaces over a field F.

(i) If M is a subspace of V, then
T(M)={x €W |3dme M, such that T(m) = =}
is a subspace of W.

(ii) If N is a subspace of W, then
T YN)={veV|T(v) € N}

is a subspace of V.

Proof. Here is the proof:
(i) Let M <V, y1,y2 € T(M) C W, and « € F.
y1,Y2 € T(M) = 3x1,20 € M sit. T(x1) =11, T(x2) = yo
Then
T(ax1 + x2) = aT'(z1) + T'(22)

since T is a linear transformation.
Also
axy+x90 €M

since M is a subspace of V.
Therefore
ayr +y2 = aT(x1) + T(x2) = T(axy + z2) € T(M)

so T'(M) is a subspace of W.
(ii) Let z1,29 € T"}(N) and o € F.
T(axy + x2) = T (z1) + T(x2) € N

since N < W and T'(z1),T(x2) € N.
Therefore
azy +xy € T7HN)

and T~1(N) is a subspace of V.
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Definition 2.6.2. T : V — W over a field F is a linear transform. Then T~!(Oy) is called the
nullspace (kernel) of Tl, where Oyy is the zero vector in W. T'(V') is called the |range (image) of Tl.

dim(T~*(Ow)) = nullity(T)

dim(T(V)) = rank(T)

2.6.2 Matrix Representation of Linear Transformations

Question. What is the transformation taken A : R? — R3

2 4
1 0

T, = — 3 , X9 = — 6
0 1

€R? 4 ER? 8

€R3 cR3
Answer.
2 4
A=13 ¢ o T{e1’e2,e3}
= = (D) (e
48 3x2
&®
Example.

T%@%%@LmTWZ%m

The ordered basis of two vector spaces are

By = B(P3(R)): {1,313}
BQ = B(PQ(R)) : {1,t,t2}

Then we have

1t 2 8 1
B, 01 0 0 1 1
T) — ¢ e.g. (T) |2
( By s 00 2 O g 1 X
g 0 0 0 3 x4 1 3x1

Example.

T : P3(R) — P3(R), ie. T(f) = i(f)

We have to handle the t? term, which means

w

1ttt
Lfo1 0 0
B, t
(T) = (T) =, 00 20 , this is called a (differentiation matrix)
By Bio 10 0 0 3
t3
000 0/,,
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Example.
t
/ : ]P3(R) — ]P)4(R)
0
The ordered basis of two vector spaces are

By = B(P3(R)) : {1,t,¢2,13}, dim(P5(R)) =4
By = B(P4(R)) : {1,t,t2,t3,¢4}, dim(Py(R)) =5

hence we have

~
>
w

1t £
Lfo 1 0 0
5 Llooo Lo
(T) By t3 0 0 0 % which is called an (integration matrix)
“fo 0o 0o o
4 1
000 3/,
and we also have
C(T) = span{t,t*,t*,t*}, rank(T) =4
N(T) = {0}, nullity(T) =0
Example.
I d
4 (Y= (4 t _ o .
(dt fo) (dt)3><4 <f0)4X3 (I)gxg Diff is the left inverse of Int

2.6.3 Rotation (), Projection P, Reflection R

We introduce three important linear transformations in R2:

Q- 0959 —sin@  p= 1 0 . R= 1 0
sinf)  cos® 0 0 0 -1

1° Rotation: @ rotates vectors by an angle 6.

cos) —sinf
<Q) N (sin@ cosf )
2X2

0 Q
o <1> ‘ Qe 1
/\ 2 Q(61)
1 1
()

Figure 2.2: Rotation in R?

A 4
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e Qg Qp=1ge
o Qo Qo= Q2
Qo Qp = Qoo
2° Projection: P projects vectors onto the #-line.
A
0-line
Lker) cos? 6
________ " P e1) =
N (e1) cosfsin 6
X >
(¥ N
\‘\ f-line
K sin @ cos 6
N\ Pte3) P(eg) = .
- -3 sin” 6

Figure 2.3: Projection onto a line at angle

cos?f  sinfcosd
P = . .2
sin @ cos 0 sin“ 0

Here are some properties of projection:
« P2=Pp
e Symmetric: PT = P

e P~1 does not exist.

10

rla cosf P cosf
sin 6 sin @

. cos®0  sinfcosf)\ [cosf) N cos® 0 + cos 0 sin® 0 _ o[ 0
N sin 6 cos 0 sin? 6 sinf | sinfcos?0 +sin®60 | sin 6
20

Pla —sinf P —sinf
cos 6 cos 0
cos’f  sinfcosf\ [ —sind —sin# cos? 0 + cosfsin 6 0
=af . .2 = .2 .3 =«
sin 6 cos 6 sin“ 6 cosf —sin“ @ cos @ + sin” 6 0

—siné
« ( s ) is in the nullspace of P.

Thus,

COS
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3° Reflection: R reflects vectors across the 6-line.

)\H(Ei] )
* f-line )
\ 0 0 1 2cos?f — 1
% H(ey) = cosd C(,)S + cos C?S - =
' sin 6 sin 6 0 2sin 6 cos 8
A S S
>
A
(Y N
. f-line
\ 0 0 0 2sin 6 cos
N H(ey) =sinf C?S + sin 6 C?S — = STHQ o8
X sin 0 sin 0 1 2sin“6 — 1
IR S

Figure 2.4: Reflection across a line at angle 0

I 2cos?f —1 2sinfcosé
~ \2sinfcos® 2sin?60—1

Here are some properties of reflection:
« H2=17T
° H71 = H
e H=2P—1 (Hx+z =2Px)

Note. If first basis vector is on the #-line, and the second basis vector is perpendicular to the #-line,

then
pr_ 10 T 1 0 _opr I Q= cos —sind
0 0 0 -1 sinf  cosf
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Orthogonality

3.1 Perpendicular Vectors and Orthogonal Subspaces

There are three important concepts in this section:
(i) The length of vector
(ii) The test for perpendicularity
(iii) How to create perpendicular vectors form linearly independent vectors
Now we start to discuss:

(i) The length of vector:
The length (or norm) of a vector, in R™, that satisfies the Pythagorean theorem is defined as:

Definition 3.1.1. Let x € R” be
X = (21,%2,...,%Tp) = X161 + To€y + -+ + xpe, € R"

then

n
x| = af =x"x
i=1

(ii) The test for perpendicularity:

Definition 3.1.2. Given x,y € R", then if x L y, then by Pythagorean theorem, we have
Ix[1* + [lyl1* = lIx - ¥
Then we can deduce that
i tas 4+t tyi sty = (- y) i (@ — )t (T — Yn)?

then we have
x'y=0
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Definition 3.1.3 (Inner Product). Let V be a vector space over a field F (R,C). An inner product
on V is a function that assigns to every ordered pair of vectors x and y in V, a scalar in I, denoted

as
(x,y)

Vx,vy,z€V, ceF, wehave
(a) (x+y,2) = (x,2) + (y,2)

(b) {cx,y) =c (x,y)

)

)

(¢) (y,x) = (x,y) (where a + bi = a — bi complex conjugate)
(d) (x,x)>0,ifx#0

Note (1). If F = R, (c¢) will reduce to (y,x) = (x,y).

Note (2). Inner product is linear in the first component.

Definition 3.1.4 (Standard Inner Product). Let V' = R"/R, defined

n
xy) =x"y=> zip;
=1

This is called the |standard inner productl on R".

Proposition 3.1.1. If x,y € R", then
e Let (x,y) = 27y be standard inner product.

o Let (x,y) =0 if and only if x L y.

Example. If (,) is any inner product on V', and r > 0, we define
(x,y) =rxy)
1° (x+y,2) =rx+y2) =r{xz) +7(y,2) = (x,2) + (y,2)’
2° {ex,y) = r{exy) = c-r(xy) = ¢{x,y)

Example. Let V = {f | f : real-valued continuous functions on [0,1]} = C([0,1]). For f,g € V,
define

(f,9) = / F(Hg(t)dt

Example. Let V = C™, C" is a vector space over C. For x,y € V, define

CHAPTER 3. ORTHOGONALITY 51



Lecture 9

Example. Let V = C, C is a vector space over C. If x,y € C, z = a + bi, y = ¢ + di, define

(x,y) = (a+ bi)(c — di)

1° (y,x) = (c+ di)(a — bi) = (a + bi)(c — di) = (x,y)

2° (x,x) = (a+bi)(a—bi) =a?+b>>0ifx #£0

Lecture 9

Definition 3.1.5 (inner product space). An |inner product spacel is a real or complex vector space 4 Nov. 13:20

(i.e. a vector space over the field R or C) together with a specified inner product on that space.

Definition 3.1.6 (orthogonal). In an inner product space V, x is |orthogonal| to y if (x,y) = 0. A
set S of vectors in V is called |orthogonal set| if all pairs of distinct vectors in S are orthogonal.

An [orthonormal set| is an orthogonal set of unit vectors.

(vv)=vl*=1, vves

Proposition 3.1.2. An orthogonal set of nonzero vectors is linearly independent.

Proof. Let vy, -+ ,v, be nonzero distinct vectors in S, and ¢1,--- ,¢, € F

C1V1 + CoV2 + -+ -+ CpUp = E CiVi =Y

n
(y,v5) <ZCZU”MUJ> Zcz v, v5) = ¢;{vj,v;) = C]HU]”

=1

Then we have y =0 <= ¢; =0, Vj

. {v1,v9, -+ ,v,} is linearly independent.
|
Example. {ej,es, - ,e,} is an orthonormal set (basis) for R™
In R2,
1° {61,62}

= {5() 5 ()}
o () ()

CHAPTER 3. ORTHOGONALITY 52



Lecture 9

3.1.1 Orthogonal Subspaces

Definition 3.1.7 (3B). Let W; and W5 be subspaces of an inner product space V. We say that W,
is to W2 (W1 1 WQ) if

<W1,W2> = 0, VYwi € Wl,VWQ e Wy

Note. In R3, the zy-plane is NOT orthogonal to the yz-plane. Because vectors along the y-axis are

in both planes, and their inner product is not zero.

Y

zZ

Figure 3.1: The zy-plane and the yz-plane in R3

Example. In R3, the subspace spanned by (1,2,3)T is orthogonal to the subspace spanned by
(1,1,-1)T.

Example. In R? the subspace spanned by (1,2,3)T is orthogonal to the subspace spanned by
{(17 17 _1)T7 (57 _47 1>T}

Theorem 3.1.1 (3C). A,,xn The row space is orthogonal to the null space (in R™), and the column
space is orthogonal to the left null space (in R™).

Proof. This is the proof.

1° o v € row space of A, then we have b = ATy for some y € R™.

e w € null space of A, then we have Aw = 0.

viw= (ATy)TW = yT(Aw) = yTO =0

2° e beC(A) = Az =1bis solvable.
e yeN(AT) = ATy =0.

by =(Az)Ty=2"(ATy) =2"0=10
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Example.
1 4 1 4
lr), =G )
o 2x3 0 13/ s
3
. C(A)zspan{() <2> rank = 2
1 5
e C(AT) =spany | 3 2|, rank=2
4 7

1
o N(A) = span 1

Tt =

n—rank =1

e N(AT) = span { <8 , —rank = 0

C(A) LN(AT) eR?| [C(AT) LN(A) eR3

Note. The nullspace N'(A) doesn’t contain "some" of vectors orthogonal to the row space. It contain

"every" such vector.

Proposition 3.1.3. Let V be an inner product space, and let W be a subspace of V. Then the set
is defined
U={veV|(v,w)=0,Ywe W}

Then U is a subspace of V.

Definition 3.1.8. The subspace U is called the |orthogonal complement | of W in V, denoted by W+
(W-perp). By definition of nullspace N(A), we have

N(4) = (C(AT)*, or C(A)=N(AT)*

Theorem 3.1.2 ((3D) Fundamental Theorem of Linear Algorithm). The nullspace is the orthogonal

complement of the row space in R”, and the left nullspace is the orthogonal complement of the
V(W) 1%
column space in R™.
V(wL) v

Proposition 3.1.4 (3E). The equation Az = b is solvable if and only if

bly=0, VyeN(A"

Note. Solvability of Az = b:
e Direct approach: b must be a combination of the columns of A.

e Indirect approach: b must be orthogonal to every vector that is orthogonal to the columns of

A.
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3.1.2 The Matrix and the Subspaces

U and W can be orthogonal without being complements when their dimensions are too small. In R3

—

\
\
\
\
\
I
-
—
I
&,
93]
~—
Y

¥ (plane)

Figure 3.2: Orthogonal but not complements

W=Ut" =>U=WtoaUt=U

When the space is split into orthogonal parts (i.e. V = U+W = U+U"), so every vector (z = zy+zy1).

Row Space
all ATy

Figure 3.3: Fundamental Theorem of Linear Algebra

Proposition 3.1.5 (3F). The mapping from row space to column space is actually invertible. Every
matrix A,,xn transforms its row space to its column space. (On these r-dimensional subspaces, A

is invertible.)
Amxn :R* 2 R™ Az =b

AT R AL R ATRZg =AW

nxm °

CHAPTER 3. ORTHOGONALITY



Lecture 9

« AT moves the space correctly but NOT the individual vectors.

o When A~! fails to exist, we can substitute. It’s called the pseudoinverse, denoted by A™.

AtAz =2, VzeC(AT)
Atb=0, VbeN(AT)

3.2 Inner Product and Projections onto Lines

:0,
£0

if x L
Inner product 2Ty = 4

Question. Practical applications?
Least squares solution to an overdetermined system. i.e. given a vector b not falling in the desired

space, we have to project to the subspace. Then we get the approximate solution.

<y

subspace

projsubspa(:e (ﬁ)

Figure 3.4: Projection onto a subspace (in R?)

Question. Practical applications?

A formula for the projection, we need the basis.

3.2.1 Inner Product and Schwarz Inequality

)
A
b(b1,b2)

sina = cosa =

as
la]l”

a(a,as) sin 8 = ”1)5”7

>
>

X

Figure 3.5: Angle between two vectors in R?

a1b1 + a2b2

os 3

ay
wa
_ b
Il

aTbh

cos ) = cos( — a) = cos Bcosa + sin Bsina = llall[o]]
a
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Proposition 3.2.1 (3G). The cosine of the angle between any two vectors a,b € R™ is

a’b
llalllo]l

cosf =

If we consider the relationship between ||al|, ||b|| and ||b — a||, then we have

16— a|* = |la||®> + ||5]|1> — 2||a||||b]| cos & (Law of Cosines)
Projection onto a Line:

b—p) La=(b—p)a=0<= (b—aa)Ta=0

T
a'b
To=0e=a=—

<~ b'a—aa T
aa

Proposition 3.2.2 (3H). The projection of b onto the line through 0&a is

a'b

pzi.a
ala

Theorem 3.2.1 (3| Schwarz Inequality). For any two vectors in inner product space satisfy the
Cauchy-Schwarz inequality:

|a”b] < [lalllb]l  or [{a, b)| < |lall[bl]

with equality if and only if b = aa, for some o € F.

Proof.
T T1\2 Tr\ 2
2 a'b o o7 (a’b) a'b T
— — b= =Zg||2 = —9. g
o= ol = b~ Sa)? =8To 2 220 4 (52 aa
TV Ta) — (aThH)2
_ (b'b)(a"a) — (a"b) S0
aTa -
= [a"b| < [lall]lo]
and the equality holds <= ||b —p|| =0 <= b =p = aa. |

Example. Project (1,1,1) — (1,2,3)

1 3/7

UL P 6/7
P= T T 14 =9

3 9/7

3.2.2 Projections of Rank One

Question. What is the matrix this linear transformation that maps b to p

aa

The projection matrix is P = —
aTa
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Note. Here are some properties of P:
1° P is symmetric: PT = P
2° P? = P (idempotent)

Proof. Here are the proofs:

1 pT — <aaT>T (@")Ta™  aa

a'a a'a a'a
90 p2 aa’ aa’ aa'aa”  a(aTa)a”  aa” P
~\a"a) \aTa) (aTa)2  (a"a)2  aTa
Proof complete. u

o rank(P) = 1, nullspace of P is the space orthogonal to a. i.e.
N(P) LC(P)

which is not general. It is right here because C(P) = C(PT) = span(a).

Remark (Scaling). Project b onto a, which can be scaled arbitrarily. i.e. project onto aa

dadm  (aa)(aa)T  aaa’  aal ( s th )
= = = =— = remains the same
P= (ea)T(aa) a?aTa aTa P

Lecture 10

3.3 Projections and Least Squares Applications 18 Nov. 13:20

a1r =by a by
A2 = bz az | £ = bQ
asr = b3 as b3

E2 = (alx — b1)2 =+ (G,Q.’E — b2)2 —+ (G,g.’E — b3)2

ai
1°ifb= | ay | o then E2 =0

asz

2° Or consider

dE?
E = 2[&1(@11‘ — bl) =+ ag(agl‘ — b2) =+ a3(a3x — b3)} =0
_ a1b1 + a2b2 + (lgbg aTb
TE= T2 TaZ+a2  |dla
1 2 3

[e3

T . . .
ZTZCL, which is also calles the |least squares solution |.

Hence, we call the projection of b onto a as p,b = Ta

a’(b—za)=0=a"b—za"a
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3.3.1 Least Squares Problem with Several Variables
ApxnTnxi = bmx1 (m > ’I?,)
o If b € Col(A), then the system is solvable.

o If the equations contain errors, then b might not belong to C(A)

aiy a2
Azxo = | a21 a2
asy as2
b
!
!
!
!
; a1
; > Coll = a1
!
asi
a _
12 p=Az =10
Col2 = azo
a32

Figure 3.6: Projection of b onto the span of the columns of A

o Ax =b has error, b ¢ C(A)

o Ax=10"issolvable =V e€C(A) & FT,x12AZ=p="0

Note. To find z, we do it in three ways:

1° The vectors perpendicular to C(A) are in N'(AT)
AT(b— Az)=0 = ATAz = ATD

2° The error vector must be perpendicular to each of A.
IfA=][a1 a2 - ay]

= ATb-Az)=0 = ATAz=ATb (A2 =V

3° The third way is to differentiate the sum of squares.

E?= Az —b|? = (Az - b)T(Az —b) = ATAz-—ATh=0 = ATAz=A"D
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Proposition 3.3.1 (3L). The least-squares solution to an inconsistent system Ax = b of m equations

AT Az = ATb

The above equation is referred to the |Normal Equation |

in n unknowns satisfies

Note. The properties of AT A:
1° AT A is symmetric.

Proof. (ATA)T = AT(AT)T = ATA [ |

2° The (i,7)'" entry of AT A is the inner product of the i*" and j** columns of A.
3° AT A has the same nullspace of A (i.e., N(ATA) = N'(A)).
Proof. We follow the two directions:

e Az=0 = ATAz=0 o N(A) CN(AT 4)
e if ATAz =0, then

tTAT Az = (Az)T (Az) = |4z’ =0 = Az=0 S N(ATA) C N(4)

Proof complete. n

4° AT A is positive definite, i.e., for any non-zero vector x,
2T AT Az = (Az)T (Az) = ||Az||®> >0
with equality if and only if Az = 0.

Proposition 3.3.2 (3L (conti.)). The least-squares solution to the inconsistent system Az = b is the

solution of the normal equation
AT Az = ATy

Proposition 3.3.3 (3M). If the columns of A are linearly independent (rank = n), then AT A is

invertible and
T = (ATA)’lATb

The projection of b onto C(A) is therefore
pe(ay = AT = A(ATA)~1 AT
Proof. We consider rank(A) =r =n = N(A) = {0} = C(ATA) = {0}
-, rank of AT A = n which means A7 A has full rank.

. AT A is invertible.

Note. If rank(A) < n, then AT A is singular and the linear system has infinitely many solutions.

CHAPTER 3. ORTHOGONALITY
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Example.
2 4
A=1|1 3 , b=|5 , Az =0

00 3x2 6 3x1

b

!

!

!

§
X T

!
Y 4
pP=15
0

Figure 3.7: Projection of b onto the span of the columns of A

4

2
1° 7= (ATA)~1 AT} <1> = p=Az= |5
0

1 2 4
2° C(A) = span 11,13 = zy — plane Sp=15
0 0 0

Remark. 1° The normal equation AT Az = ATb is indeed consistent.
2° If b € C(A), then p = b.
3° Suppose b L C(A), then p = 0.
4° When A is square and invertiblem, then C(A4) = R”

p=AATA)ATh = b

5° If Appxr =a, then ATA=a"a

= (a"a)ta'b= — =a

3.3.2 Projection Matrices

Let A be an m x n matrix over R, C(A) < R™.

Let b ¢ C(A), the closest point to b in C(A) is p = A(ATA) "L ATb.

Let P = A(ATA)"1AT.

i.e. The matrix projects any vector b onto C(A).

i.e. p =Pb is the component of b in C(A).

i.e. b— Pb (error) is the component of b in orthogonal complement N (AT).

CHAPTER 3. ORTHOGONALITY
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Corollary 3.3.1.
I= P + (I-"P)

projection onto C(A) projection onto C(A)+

Theorem 3.3.1 (3N). Here are some properties of projection matrix

1. P2="P

2. P =P

3.3.3 Least Square Fitting of Data

C+Dt=>b
Given m data points
C + Dtl = bl 1 tl bl
C + Dtg = bg 1 tQ (C) b2
= =
: . D .
C + Dty = by, L tm bm

= min E? = ||b— (C + Dt)||> = ||b — Az|]?

bec Dt;)

Example. (¢;,b;): (—1,1),(1,1),(2, 3)

t1 b1 t2 bo t3 b3

b
A
(t3,03)
9 . 4y _
® . di=p
|
|
|
|
7 YL |
|
o
(t‘) b‘)) >
Pli%f PQZ% P:%:%

Figure 3.8: Least Squares Line Fitting
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(B3 2 (5
P = A(ATA)ilAT = 7 3 5 6 = p=Pb= - 13
-2 6 10 3v3 17
2
1
. errorvector:bfp:? -6
4
13 3 —2 ) 536 —2 13
P:ﬂ 32 2 160 —>U:ﬂ 0 3 % = C(P) = span 32 15 = 2—3y+22z =0
- 0 0 0 -
1 —1
C(A)=spanq [1],[ 1 >z-3y+2:=0 = C(P)=C(A)
1 2

3.4 Orthogonal Bases, Orthogonal Matrices and Gram-Schmidt
Orthogonalization

Recall. The vectors q1, go, - - - g1 are orthognormal if

1 i=j

T
q; 45 =
' 0 i#j

3.4.1 Orthogonal Matrices

Definition 3.4.1 (3Q). An |orthognoral matrix Q| is a square matrix satisfying QTQ = I. If Q =
[91 2 -+ gn], then

. G| [dig| - 4 dn

aq =)

T T T

= Ba |Ge| o G
QQ=|" |@we a=|" 2 2 =1,

i o ot r

nxn

i.e. The columns of @ are orthonormal and Q! = Q7.

Example. Here are some examples:

e Rotation matrix cost —sind YES
sinf  cos@

e Permutation matrix YES

S = O

1
0
0

—_ o O
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Proposition 3.4.1 (3R). Here are some properties
o Q] ==, Vz

e (Qz,Qy) = (z,y),Va,y

The properties preserve
1° length
2° inner product

3° angle (since cosf =

(z,y)
el

orthonormal whenever the columns are orthonormal.

Remark. Since Q7! = QT, we also have QQT = I. Therefore, the rows of a square matrix are

We’ve learned that any vector is a combination of basis vectors. The problem becomes how to find the

coefficients of the combination.

Let {q1,q2," -

try to compute x;’s:

,qn} be an orthonormal basis, then for any vector b

b=1x1q1 +T2q2 + - - + Tpqn

afb =21l ¢t + 22T @2 + -+ 20ql @ = 11
1 0 0

Similarly, we have z; = ¢/'b, i =1,2,--- ,n. ie.

for the matrix form

b= (g1 b)qr + (g3 b)g2 + - + (¢ D)an

Ty
T2 1 T
b=(@ ¢ - a)| . |=Q r=0Q b=0Q b=
In
Tp
RecaII.P:aToa
al'a
Therefore, we can rewrite b as
T T T
¢ b g b an b
b= —q+ F—q@+ -+ @ =Py b+ Ppb+---+Pgy.b
da @ Tgn " ™ !

i.e. The sum of the projections of b onto each basis vector equals to b itself.

CHAPTER 3. ORTHOGONALITY
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Lecture 11

3.4.2 Rectangular Matrices with Orthogonal Columns 25 Nov. 13:20

Axr =b, where A is not neccessarily square.

Similarly, we may have a system Qz = b, where Q,;,x is NOT square and m > n.

Note.
QTQ=| : ((h Qn) =1 i =h
qTTL" 0O --- 1

In this case, QT is the left inverse of Q.

Proposition 3.4.2 (3S). If @ has orthonormal columns, then the least squares problem is easy.
e Qxn: has no solution for most b «~—— Ax =10
e QTQz = Q"b: normal equation «—— ATAz = ATb
e T =QTb: least squares solution

e P = QQT <—— P = A(ATA>71AT

3.4.3 The Gram-Schmidt Process

Recall. S = {z1,--- ,z,} is an orthognoral subset if V" if Vi # j, (x;, ;) = 0 and S is orthonormal
if additionally
i, 6=4
(159, 15p)) = Gy = /
0, ij
Notation. ||z|| = v/(x, ) is called the of z. ({(x,z) >0, if x #0)

Note. There are many norms,
e Lnomm: [z, = X0, Je]

o 2-norm: ||zfls = /> @7

o oo-norm: ||z|lec = maxi<i<p |
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Theorem 3.4.1 (1). Let V' be an inner product space and let S = {z1---2,} be an orthogonal

k
Yy = E ;T4
=1

subset of non-zero vectors. If

then

k
Y,Tj . 1 Y, T
a,j: < J> for]:]_,...,n. (l'e' y:Z<||$”72>.TJ)
i=1 "7

Proof. Since i
<Z/z‘,$j> = Z = aj
i=1
Thus,

_ <yaxj>
T [l

Corollary 3.4.1 (1). If S is, then

k
§ Y, x]
g=il

Corollary 3.4.2 (2). If S is an orthonormal set of non-zero vectors, then S is linearly independent.

Example. In R3, {\}_(1, 1,0), Lg( —1, 1), \}6( 1,1 2)} Find the orthognormal set.
; _ 3L 2 A 2L
Given (1,2,3) = 7 Lﬁ(l,l,O)] + 7 [\/g(l, 1,1)} + 7 L/é( 1,1,2)}

Remark. Suppose {y1,y2} is linearly independent set. We would like to construct an orthogonal
set, {x1,x2}, that spans the same subspace. One way is to take 1 = y; and x5 = ya — p, where p

is the projection of ys onto .
_ (y2,v1)
[ly[|?

In other words, we take

_ <y27y1>
T2 = Y2 — 5 Y1
lyal

Theorem 3.4.2 (2. extend to n vectors). Let V' be an inner product space and let S = {y1, -+ ,Ym}
be a linearly independent subset of V. Define S’ = {x1,--- ,x,,} where
- Wi
1 =Y, xk:yk—z ﬁk’”; z;, for2<k<m.
3 xX;
i=1

Gram-Schmidt Orthogonalization

THen S’ is an orthogonal set of non-zero vectors such that

span(S’) = span(S).
Proof. Supplymentary notes. |
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Example. In R3, let y; = (1,1,0), yo = (2,0,1), y3 = (2,2,1). Find an orthogonal basis for

X1,T2,T3.

e T1 =M :(1a170)

, T 2
e T2 = 1Y — <ﬁ;1|;>x1 = (2,0, 1) — 5(1’ 170) = (1’_1, 1)
_ <y3vx1> <y37$2> _ 112
B T e 5503

3.4.4 The Factorization A = QR

A:(a1|"'|an)mxn—>Q:(q1|"'|qn)m><n QTQ:In

Theorem 3.4.3 (3U). Every m x n matrix A with linearly independent columns can be factored as

A= QanRan

The columns of ) are orthognormal and R is an invertible upper-triangular matrix. When m = n

and all matrices are square, @) is orthogonal.

Proof. We use Gram-Schmidt Orthogonalization process to construct @ and R.

As previously seen (Theorem (2)).

lialiji(flwqﬁ,(_ %
LA P A A P

Let a1, -+, a, be the columns of A. By Gram-Schmidt Orthogonalization process, we can construct
orthonormal vectors

q1,+ ,qn D spanf{qi, - ,qn} =span{ay,--- ,a,} for j=1,--- 'n

So
a;j=(¢"a)-q1+---+(qj_1a) - qj—1 + |}l - ¢; (i.e. linear combination of gjs)
lall afaz -+ dqfay
0 gl -+ azan
A=(a |- lan)=(a1 |- an) | . S . | =QR
0 0 - gl
j=1: a1=|ldll -
§=2: a=(q{a2) - q1 + |gall - ¢
j=n: ap= (Q{an) g1+ (qgan) o (q,{,lan) “Qn—1 t ||q’:’LH “Gn
i.e. R is invertible since its diagonal entries are non-zero. |
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Example.
1 -2 -3 1 —2 -3
A: 2 O _3 a1 = 2 , a2 = 0 , a3 = _3
2 4 3 2 4 3
1 -
q1
Pg=a=|2|, a=—77=5]2
! larll 3
2
-2 N (8 (8
2° qg:a2_<a27Q1>'Q1= 0 —2-—-12 = = —4 R go = qIQ = — —4
3 3 el 12
4 2 8 8
-3 1 —2 2
o / p ]- . 1 1
3° q3 = az — (a3, q1) - q1 — (a3,q2) g2 = | =3 —(*1)’5 2 —o3 -1 =3 =21, @=
3 2 2 1
2/3
!
1
1 =1 | 2
3 1/3
4° Thus,
1 -2 -3 | 3 2 -1
A=1[2 0 =3|= |a ¢ g 0 4 5 = QR
2 4 3 | 00 1

invertible upper-triangular record Gram-Schmidt

Remark. A: linearly independent columns
Ax =b inconsistent
—  ATAz=ATp (A=QR — ATA=RTQTQR = RTR)

— RTRz =A"b (R is invertible)
— Rz=Q"

i.e. inconsistent — consistent
Az=b Rz=QTb
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Determinant

4.1 Introduction to Determinants

(A) A test for invertivility
If det A =0, A is singular
If det A #0, A is invertible

The most important application is whether det(A — AI') = 0 (characteristic polynomial). We shall
see that det(A — AI) is a polynomial of degree n in A.

(B) The determinant gives formulas for the pivots i.e.

determinant = +(product of pivots)

(C) The determinant measures the dependence of A~1b on each entry of b (Cramer’s rule). If one
parameter in changed in an experiment, or one observation is corrected, the influence coefficients

on z = A~'b is a ratio of determinants.

4.2 The Properties of Determinants

Definition 4.2.1 (determinant). Let A be an n x n square matrix over F. The determinant of A is

a function

det : Myxn(F) = F
satisfies the following conditions:

(i) The det A is a linear function if the i-th row (i = 1,2,--- ,n)when the other (n — 1) rows are
held fixed. i.e. if

det A= D(Ay, -, A;, -+, Ay)where A; is the i-th row of A,
then

det(A1,~-- 7A1'_1,O(Ai +A;,Ai+1,"' 7An)
:Oédet(Al,"' 7Ai—1;Ai7Ai+1a"' 7An)+det(Al) aAi—laA;7Ai+17"' 7An)
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Example.

/ / A /
det eta b = det o b + det @ b
@ d c d c d

(if) detI =1

(ili) det(P;;A) = —det A, where P;;A is the permutation matrix.
)
)

(iv) det A =0, if A has two identical rows.

(v) det(EA) = det A, if E is the elementary operation of subtracting a multiple of one row from

another row.
Proof. For the following steps,
det(Ay, -+, A1, 0l + Aj, A, -+ L Ay)
D o det(Ar, -+, Ai_1, Ai, Aipr, -+, Ap) + det(Ar, -+, Ai_1, Ajy Aigr,-oo  Ay)

& adet(A) + 0 = det(A)

(vi) If A has a row of zeros, then det A = 0.

Proof. (v) + (iv) ]

(vii) If A is triangular, then det A = a11a22 - Gy

Proof. Here is the steps

a1 a2 - Qip
O a22 DR 012 . a22 a2n n
1° det A © det | . ] © appdet | - ., B H
. . . . 0 . ann ':
0 0 - ap,
2° If aj; = 0, by (v), the j-th row can be converted to a zero row, thus by (vi),
det A = 0.
(viii) If A is singular < det A = 0. If A is invertible < det A # 0.
Proof. Let
PRI
det A Y det U Y £ didy - dyy

(ix) det(AB) =det A-det B

CHAPTER 4. DETERMINANT
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(x) det(AT) =det A
Proof. We separately consider two cases:

o Casel: A is singular & A7 is singular.
e Case2: A is nonsigular == PA = LDU

1° (det P)(det A) = det Ldet D det U = det D
2° (PA)T = (LDU)T and thus

(det AT)(det PT) = det DT = det AT = det D = det A

Note. PPT =1 = (det P)(det PT) =detI =1 and det P, det PT € {1,—1}

Done. ]
Example.
2 -1 0 0 0 0 0 0 0
-1 2 -1 0 0 0 2 0 0 0
0 -1 2 0 0 0 0 3 0 0
Ap = . =L . : .| U
0 0 2 -1 00 0 S0
0 0 0 -1 2/ o0 0 -~ o0 =t

Thus,

det 4, =2- =n+1.

4.3 Formulas for the Determinant
Proposition 4.3.1 (4A). If A is nonsingular, then A = P~'LDU and

det A = +(product of pivots)

a by (1 0\fa O 1b/a¢dtab*d7b
c d)  \c/a 1 0 ad=be J o 1 e @) ="

Example.

Example.

Thus, the non-zero terms have to come in different columns
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Lecture 12
aj; a2 ais all 0 0 0 a2 0 0 0 ais
a21 Q29 Q23| = 0 as2 0[+1]0 0 aos + a1 0 0
az1r azz ass 0 0 ass az1 0 0 0 azx O
0 a2 0 0 0 a3 ail 0 0
+ a1 0 0|+]0 a9 0|+1]0 0 a3
0 0 ass a3l 0 0 0 as9 0
1 0 0 010 0
=ajiaga33|0 1 0|+ ajeazsasz; |0 0 1|+ aizagiass |1
0 0 1 1 00 0
010 0 0 1 1
+ ajoazg1as3 |1l 0 0|4+ aizazas |0 1 0|+ aji1az3ase |0
0 0 1 1 00 0
Corollary 4.3.1.
det(A) = Z <sgn(0) Hai,o(i)>
€Sy i=1
where S,, is the set of all permutations on {1,2,...,n} and sgn(o) is the sign of the permutation o.
|Sn| = n!
In other words det(A) is the sum of n! terms and for each term, every row and column cintributes to
exactly one element. So it is not difficult to see that
det A =a11411 +a2l12 + ...+ a1nA1n
where
Ay = (=) My
is the cofactor of a;;, and M, is the submatrix of A obtained by deleting the 1-th row and j-th column.
Similarly,
Proposition 4.3.2 (4B).
det A = a;1 A1 +appdio + ...+ aimAin
where
Ayj = (1) M
is the cofactor of a;;. M;; is the submatrix of A obtained by deleting the i-th row and j-th column.
CHAPTER 4. DETERMINANT 72
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Example.
1 2 5 4
A 3 6 4 2
0 332 0 434
-1 2 2 3

det A = 3(—1)*"2 . det Msp + 4(—1)*"* - det M3,

1 5 4 1 25
=(=3)[3 4 2[+(-4)|3 1 4
-1 2 3 -1 2 2

= (=3)[1(8) + 5(=1)(11) + 4(10)]
— 15

+ (=4)[1(=6) + 2(10)(=1) 4 5(7)]

- det A = det AT

so we can also expand along columns. i.e.

det A = alelj —+ (J,QjAQj + ...+ anjAnj

4.4 Appplications of Determinants

(A) The computation of A~1

A adj(A) adjugate matrix
aix a2 ... Qain A A 0 Ap
ag1 a9 (057 A12 AQQ e Ang
. . . ) . = det(A)l,
apl Ap2 ... Qpp Aln AQn R Ann

a11Ao1 + aj0los + ...+ a1, Aa, = det(B)

ai; a2 ... Qin

an1

Proposition 4.4.1 (4C).

If det(A) # 0, then

If det(A) = 0, then A is not invertible.

CHAPTER 4. DETERMINANT
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(B) The solution of system of linear equations

Theorem 4.4.1 (4D - Cramer's Rule). If A is an invertible n X n matrix, then the unique

solution of the system of equations Ax =b is x = A~'b and

a1 a2 ... G145-1 bl ai,j+1 .. Q1
a a c. Qg b as,; e.oa

det(A;) 21 22 2,j—1 2 2,5+1 2n

T = ,where B; =

det(A)

an1 Ap2 ... Qapj—1 b,,,, An,j4+1  --. 0Onn
j-th column
Proof. Let

det BJ = i biAij

i=1

Since A is invertible, by Proposition 4C, we have

1
A= —_adj(4
det A adj(4)
Thus,
T A11 A21 500 Anl b1 det Bl
X2 1 A12 A22 coo Ang b2 1 det B2
D] detA | Do S| detA :
T Aln Agn coo Ann bn det Bn
|
(C) Volume of parallelepipeds
—a — Z% 0 . 0
a1 | 0 2 ... 0
AAT = ) a a ... al|=]|. . ) l; : length of a;
. | | | . : . .
—a, — 0 0 ... 2

det(AAT) = (det A)* = (365...02
. If rows of A are mutually perpendicular, |det A| = ¢105... 4,
(D) A formula for pivots
Proposition 4.4.2 (4E). If A is factored into LDU, then upper left corners satisfy
Ay = Ly DUy
For every k, the submatrix Ay is going through a Gaussian elimination of its own.
(Lk 0) <Dk 0) <Uk F) _ (LkaUk LiDyF ) .
B C 0 FE 0 G BDU, BDyF + CEG
The pivot entries ate all nonzero whenever the numbers of det A’s are all nonzero.

Note.

det Ay, = (det Lk) . (det Dk) . (det Uk) = det(Dk) =det Dy, = di1daa . .. dgy
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Notation.
det Ak

dy = ——"
k det Ak—l

for k=1,2,...,n (detAp:=1)

Gaussian Elimination can be carried out without row exchanges if and only if leading submatrices

Ay, As, ..., A, are all nonzero.

_det Ay det Ay det A,
N det AO det A1 o det An,1

didy ... dg =det A, =det A
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Eigenvalues and Eigenvectors

5.1 Introduction

Question. What are the eigenvalues of a matrix and how useful are they?

1
Consider a matrix A = ( 5

4), then A can be treated as a linear transformation on R? that maps

each vector v to T'(v) = u. i.e.

v= <m1> AN T(v)=u=Av

)

and we can get
Av = \v

Definition 5.1.1. Let A be an n x n matrix. If there exists a nonzero vector v s.t.
Av = Av
for some scalar A, then A is called an eigenvalue of A and v is called an eigenvector of A

corresponding to .

Theorem 5.1.1 (5A).
Av=)Xv & det(A— M) =0
and for each eigenvalue \ exists at least one (nonzero) eigenvector x associated with it.

Proof. We separately prove the two directions.

= By definition, 3 nonzero vector x s.t. Ax = Ax. This means,
Ax —Ax =0
has nonzero solution, so A — AI must be singular. i.e.
det(A—AI)=0
< If det(A — AI) = 0, then A — AI has nontrivial solution(s) v. Hence,

Av = v
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implies that A is an eigenvalue of A with eigenvector v.

eigenvectors are NEVER unique. e.g.
Alav) = aAv = adv = ANav) Ya #0
Note. An n x n matrix A can have at most n distinct (real or complex) eigenvalues.
Definition 5.1.2.
det(A—AI)=0
is called the characteristic equation of A and the polynomial
p(A) = det(A — \I)

is called the characteristic polynomial of A. For each eigenvalue ), the eigenspace correspond-
ing to A is defined as
Ey={veR": Av = \v}

which is the null space of A — AI.

Example.

Example.

A=3,2
Example. Projection matrix
p_ 0.5 0.5
0.5 0.5
0.5—A 0.5
det(P — \I) = =(A=-1A=0
0.5 0.5— X

CHAPTER 5. EIGENVALUES AND EIGENVECTORS
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05-1 05 05 05
°A\=1P-\= =
05 05-1 05 —0.5

—-0.5 0.5 1
=0 = 21 =
0.5 —0.5 1
=
0.5 0.5 1
o =0 = x9 =
0.5 0.5 -1
2° My=0,P—XI=P
Example. A is triangular
ayl — A 0 o0 0 0
0 ago — Ao 0 n
det(A— M) =| . . =]]@i-»=0
. 5 . o i=1
0 0 e Qpn — A

Therefore, the eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 5.1.2 (5B). The sum of the n eigenvalues equals the sum of the n diagonal entries:

tI‘(A) = ia“‘ = i)\l
i=1 i=1

Furthermore, the product of the n eigenvalues equals the product of the n diagonal entries:

n n

Proof. We separately prove the two parts.

(1) pa@) =M —2) X2 —2)... M —2)=(—2)"+ M+ A2+ -+ X)) (—2)" L+ ...
The coefficient of (—x)" ! in pa(x) is Ay + Ao + -+ + Ap.

a1 Q12 -0 Qin

anl an2 tee Ann
aip] — & ai2 to A1n
a21 ag2 — X - A2n
pa(x) = det(A — a) = det
an1 an?2 vt OQpp — T

= (a11 — ) X C11 + a12 X Ciz2 + - - - + a1p, X Ciy, where Cy; is the cofactor of ay;.

For C4;,Vj =2,3,...,n, the highest power of (—z) is n — 2.
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a21 a23 a2n
142 azy a33 — T a3n
For example, Ci2 = (—1)'T=det
An1 Gn3 Apn — T

So C1;,Vj =2,3,...,n can’t generate the (—x)"~! term.

The coefficient of (—x)"~! in p4(z) is equal to the coefficient of (—z)"~! in

a22 — T a23 ce a2n
as2 azz —T - a3n
(a11 — x) x det
an2 an3 ot Opp — X
Similarly,
a22 — I a23 e G2p
as2 asz —r - azn

the coefficient of (—z)"~! in (a1; — ) x det

an2 an3 v Opn — X
is equal to the coefficient of (—z)"~! in
azz — 34 T a3n
(43  O44 —T - Q4n
(a11 — x) (a2 — ) x det
an3 QAn4 o Opp — X
Therefore, the coefficient of (—x)"~! in pa(x) will be equal to the coefficient of (—z)"~! in

(a11 — x)(age — ) ... (apn — ).
"“Lin pa(x) is a1 + aga + -+ + apy = tr(A).

By (1) (2), we have Ay + Ao + -+ + A, = tr(A4).

i.e. the coefficient of (—z)

Next, we prove the product part.

pa(z) =det(A—al) = (A —z)(A2 —z)...(Ap — ).
= pa(0) =det(A) = MA2... A\,
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Let us summarize some properties of eigenvalues and eigenvectors.

To each eigenvalue, there is an eigenvector corresponding to it, and to each eigenvector, there is

an eigenvalue corresponding to it.
An eigenvalue can be zero. However, an eigenvector can never be the zero vector.
If Az = Az, then A(az) = M ax)

i.e. any scalar multiple of an eigenvector is still an eigenvector corresponding to the same eigenvalue.

However, there can be independent eigenvectors associated with the same eigenvalue.

Theorem 5.1.3. The following statements are equivalent:

(a) A is an eigenvalue of A.
(b) det(A—AI)=0.

(¢) A — Al is not singular.

The eigenvalue of A are the roots of its characteristic polynomial p(\) = det(A — AI) = 0.

If X\ is an eigenvalue of A, then the corresponding eigenvectors is the solution(s) of the linear system
(A= XDz =0.

If A is an eigenvalue of A, then the nullspace of (A — AI) is called the eigenspace corresponding to
A

A may be a repeated root of the characteristic polynomial. Thus multiplicity of repetition is called
the algebraic multiplicity of the eigenvalue. The dimension of the eigenspace corresponding to
A is called the geometric multiplicity of the eigenvalue.

If A is a matrix over R, A may have no eigenvalues in R. e.g.

=)

However, if we allow complex eigenvalues and eigenvectors, then every real matrix has at least one

eigenvalue in C.
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Lecture 13

5.2 Diagonalization of a Matrix 9 Dec. 13:20

Definition 5.2.1. An n x n matrix A is said to be diagonalizable if there exists a nonsingular

matrix S such that

STIAS = A
where A is a diagonal matrix.
Theorem 5.2.1 (5C). Suppose A, x, has n linearly independent eigenvectors 1, zs, ..., z,. Let S
be the n x n matrix with x1,zs,...,x, as its columns. Then
M O - 0
0 X --- 0
STIAS =A= . :
0 O An
where \;’s satisfy Axz; = \;jx;.
Proof. Suppose S = (21 | -+ | Zn)nxn- Then
AS = (Azxy |- | Azp) = (Mx1 |-+ | AnTn)nxn
M O - 0
0 Xo -+ 0
=(@1 || zn) : .| =54
0 0 An
= S71AS=A
for nonsingular S. |
Remark (1). If Ay, ..., A\, are distinct, then the eigenvectors z1, ..., z, are linearly independent. In

other words, a matrix with distinct eigenvalues can be diagonalized.

Remark (2). The diagnoalizing matrix S is not unique. Repeated eigenvalues leave more e.g.
S'sS=1

is true for any nonsingular S.

Remark (3). AS = SA holds if and only if the columns of S are eigenvectors of A.

Remark (4). Note all matrices posses n linearly independent eigenvectors and therefore not all

matrices are diagonalizable.

Theorem 5.2.2 (5D). The eigenvectors x1, . . ., 2, coorsponding to the distinct eigenvalues A1, ..., Ag

of A are linearly independent.
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Example.

where \{ = Ay =1
1 -1 —
Ty _ [T 22 = = Ty — 1 L teR
0 1 Zo o T2 0

1 2
Let P = (0 O)’ when we have

AP — 1 -1 1 2 _ 1 2 1 0 _pD
0 1 0 0 0 0/\0 1
which implies that A is not diagonalizable.

Note. We have following properties
2° Invertibility is connected to eigenvalues (no zero eigenvalue).

The only connection between diagonalizability and invertibility probably is

“Diagonalization can fail only if there are repeated eigenvalues.”

(12 1/2
A_<1/2 1/2)

= A is a projection matrix where the eigenvalues are 0, 1

Example.

We have
AT = A
A=A

1
e A =1, we have eigenvector x; =t <1>

Example.
Q=1-2uu”, uweR" uwlu=1

1° Diagonalizability is connected to eigenvectors (n linearly independent eigenvectors).

is called a Householder reflection matrix. (Reflection about the hyperplane orthogonal to u

direction.)

Assume
B 1/v2 (0 -1 (0 =1\ [xz\ ([-vy
() (03) e (0 ()

det(Q —AN) =X —1=0= )\ =1, =1

We have
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1
e )\ =1, eigenvector x1 =t < 1)

1
e Ay = —1, eigenvector xo =1 <1>

The Householder transformation is a reflection about the axis perpendicular to w.

5.2.1 Powers and Products: A* and AB

IfAz =Xz, 2z #0
= A%z = A(Az) = Nz = Nz

Proposition 5.2.1 (5E). The eigenvalues of A* are A\¥, A5 ... Xk

n

i.e. the k-th power of the eigen-
values of A.

o If STLAS = A, then S~1AFS = AF,

o If A is invertible, then the eigenvalues of A~! are )\fl, )\gl, oo ;tand ST1ATIS = AT

Note. ) is an eigenvalue of A and p is an eigenvalue of B and x is an eigenvector of B.
(AB)x = pAzx = prxz = (Ap)x

but in general x is not necessarily an eigenvector of A corresponding to A.

()96

which has eigenvalues 1 and 0, but neither A nor B has any eigenvalues 1.

Example.

Note.

= A+ p : may not be an eigenvalue of A + B

A : eigenvalue of A = Ap : may not be an eigenvalue of AB
w : eigenvalue of B

Theorem 5.2.3 (5F). If A and B are diagonalizable , they have the same eigenvector matrix S if
and only if they commute i.e. AB = BA.

Proof. We follow the two directions.

“=7 If3835 85 1AS = A, STIBS = Ay, then we have

AB = SA1S71SA5S7 = SASA1ST = SA,STISA ST = BA

“<=” We assume that all eigenvalues of A are distinct. If AB = BA, and Az = Az, then

Case 1 Bx =0, i.e. x is an eigenvector of B corresponding to eigenvalue 0.

Case 2 Bz # 0, then
ABz = BAx = ABx = Az’ = \2/
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So,

2’ = Bx = px i.e. x is an eigenvector of B.

Hence, A, B share the same eigenvectors.
Proof is complete. |
Theorem 5.2.4. Let A be an n X n matrix over F. Assume. that the characteristic polynomial of A

has solutions in F'. Then for each eigenvalue A of A, its geometric multiplicity is less than or equal
to its algebraic multiplicity.

Theorem 5.2.5. AB and BA have the same eigenvalues.

5.3 Difference Equations and Powers A*

e Difference equations: move forward in a finite # of finite steps.

e Differential equations: take infinite # of infinitesimal steps.

Example. Fibonacci sequence:
0,1,1,2,3,5,8,13, - -

Fy=0
=1
Frio=Fyy1+Fy, k>0

What is F100000000007

F F 11 F;
Let up = | "), uper = [ 51?2 = k+1
Fy, Fit+1 10 Fy,

Let A= <1 (1)>, then we have

where ug = = .
Fy 0

Proposition 5.3.1 (5G). If A can be diagonalized, say A = SAS™!, then

Uk4+1 = Auy | = up = Ak’LLO

up = APug = SA*S tuy = SAFC

where C' = S~'uy is a constant vector. Then,

Ao 0 1
0 Mt 0 Co ®
Up = SAkC = (xl Zo ZL’n) ,2 . = Z Ci/\fxi
: . =1
0 0 e ) \en

i.e. the solution is a linear combination of A\fx;.
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sponding to eigenvalues \;’s, then

up = AFug = clx\lfxl + CQ)\IQCI'Q + -4 cn)\ﬁxn

same linear combination of \¥z;.

Note. To solve the difference equation up1 = Auyg, ug is given.
1° Find \;’s and z;’s of A.
TImS:(m zy oo %)&MCZSAW.

3° The solution is .
ur = SAFC = Z ci/\fxi

i=1

5.3.1 Markov Process

Proposition 5.3.2 (5H). If ug = c1z1 + coxa + -+ + ¢p@, where x;’s are eigenvectors of A corre-

In general, ug is not an eigenvector but if ug is a linear combination of eigenvectors, then wuy is the

Suppose each year 1/10 of the population moves in California and 2/10 moves out of California to other
states. Let y be the peeple outside California and z be the people inside California, then at the end of

the of the 1st year, we have
Y1 = Yo + 520 _ (vr) _ (9/10 2/10) (w0
5=yt Sz 7 1/10 8/10) \ z

9/10
8/10 /

‘ 2/10 ‘

1/10
Figure 5.1: Markov Process

The essential assumption of Markov process is

e The population in both states is constant and never be negative.

e The ug41 only depends on uy, i.e.
U1 = Aug,

e The total population is constant.

1. all entries are positive or zero.

2. column sums are 1.
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Example.
. 9/10 2/10
~\1/10 8/10
We have 17 .
. — 2—7 frd frd = —
det(A— M) =X 10)\+1 0= XA =1, 10
Since
e 2/3  1/3 1 0 1 1 (A:SAS’I)
1/3 -1/3 0 7/10 1 -2
We have

E

Y} _ g4 (Y0 — 2/3 1/3 1* 0 1 Yo oo [ Yot
o) ) \1/3 —1/3)\ o (7/100°) \1 -2/ \ 2 - \wo— 22
= (o + 20)(1)* (fﬁ) + (0 — 220)(7/10)* (f{;)

When k& — oo, we have
. Y 2/3
1 =
iy <2k> (o + 20) (1 /3)

i.e. No matter what the initial population distribution is, the population will eventually stabilize at 2/3

outside and 1/3 inside.
09 02\ (2/3\ (23 -,
0.1 0.8)\1/3 1/3

The steady state u is an eigenvector of A corresponding to A = 1.
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SVD and Applications

A.1 Singular Value Decomposition (SVD)

Definition A.1.1 (Singular Value Decomposition). Any matrix A € R™*" can be factored into
A =UxVT = (orthogonal)(diagonal) (orthogonal)
where:
o The columns of U € R™*™ are eigenvectors of AAT and satisfy UTU = I.

o The columns of V € R™*™ are eigenvectors of AT A and satisfy VIV = I.

e When A has rank r, the diagonal matrix ¥ € R™*"™ has r singular values, o1 > --- > o, > 0,

filling the first r places on the main diagonal. The rest of X is zero.

Remark. The r singular values are the square roots of the nonzero eigenvalues of both AAT and
AT A,

Theorem A.1.1 (Fundamental Subspaces Basis). U and V' give orthonormal bases for all four fun-
damental subspaces:

e First r columns of U: Basis for the column space of A.

e Last m — r columns of U: Basis for the left nullspace of A.

e First r columns of V: Basis for the row space of A.

e Last n — r columns of V: Basis for the nullspace of A.

Remark (1).
AAT =uxvTvsTuT =usshu”
Here, X7 is the m x m eigenvalue matrix with o, ...,02 on the diagonal.
Remark (2).
ATA=vTUTusvT = v(ETs)vT
Here, 7Y is the n x n eigenvalue matrix with o%,...,02 on the diagonal.
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Remark (3). We can express A as a sum of rank-1 matrices:

s
A= E OjU;V;
j=1

where u; is the j-th column of U and vj; is the j-th column of V.
Remark (4). The action of A on v; is given by Av; = oju;.

Theorem A.1.2 (Procedure to Find SVD). To find the SVD of a matrix A:

1. Calculate AT A.

2. Find the eigenvalues of ATA: 0} > - >02>0=02, = =02
3. Construct ¥ by placing o1, ..., 0, on the diagonal and zeros elsewhere.

4. Find the eigenvectors for AT A. For eigenvectors with the same eigenvalue, use Gram-Schmidt

orthogonalization.
5. Construct V' = [vy ... v,]| where v; is the normalized eigenvector corresponding to 012».
6. Construct U = [uy ... Up]:

o For 1 <j<r, calculate u; = %Avj.
J

o For the remaining columns (¢41,...,Un), find an orthonormal basis for the nullspace
of AT (Left Nullspace) using Gram-Schmidt.

1 -1
Example. Find the SVD for A = < T 22>.

2 =2 4
1. Calculate ATA=|-2 2 —4
4 -4 8

2. Eigenvalues of ATA: 02 =12, 02 =0, 02 = 0.

.E:<\/ﬁ 0 ()).
0 0 0

w

4. Eigenvectors:

-1
e For A =12: N(ATA —12I) = span 1
-2
-2 -1
o For A =0: N(ATA) = span 11,10 . After Gram-Schmidt: 1],
1 0
5. Construct V:
-1 1 -1
1 ] 1 ] 1
V1= —= ) 2= = y U3 = —=
2
Ve V2|, V3
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Thus, V =

Jusisl
= sk
shssl

6. Construct U:

1
V12

s

°« U =

—1
v = (
. T 1 .
e Find usy from N(A") = span o Normalized: us =

-1 1
Thus, U = (‘/5 ﬁ)

S-S
~—

S-S
~—

1 1

N
A.2 Applications of SVD

A.2.1 Image Processing

An image can be represented as an m X n matrix of pixels. We can use SVD to find the essential
information and compress the image.

o Typically, some singular values ¢ are significant while others are extremely small.

e We can keep the first k largest singular values and discard the rest. The approximation is:

k
N T
A E oiU;;
i=1

o This reduces the data from m x n to k(m + n + 1), saving storage/bandwidth.

A.2.2 Information Retrieval (Latent Semantic Indexing)

Definition A.2.1 (Term-by-Document Matrix). Construct a matrix A = [a; ;] where a; ; represents
the frequency of term i in document j.

Example (Search Engine Query). Consider a matrix A representing terms (Advisor, Algebra, Ball,
Calculus, Computer, Math) across 4 documents.

A query for "Club" can be processed by projecting terms and documents into a lower-dimensional
space using SVD (k = 2).

The projection of terms is given by UiXy, and the projection of documents is given by Vi Xy.

e Result: The projection of the term "Club" and "Doc3" are found to be close in the 2D space,
indicating relevance even if the exact word counts are sparse.
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